
LECTURE 11: HYPOTHESIS TESTING

MECO 7312.
INSTRUCTOR: DR. KHAI CHIONG

NOVEMBER 5, 2024

1. Methods of evaluating tests

Suppose you want to test that the population mean is 2.

Test H0 : µ = 2 versus H1 : µ 6= 2.

Why are the following good or bad tests?

(i) 1(X̄n 6= 2)

(ii) 1(X̄n 6∈ [1.8, 2.2])

(iii) 1(X̄n 6∈ [−10, 30])

Test 1 “rejects too often” (in fact, for every n, you reject with probability 1). Test
2 seems ok, Test 3 seems to accept too often.

Since the outcome of a test itself is a random variable, even if the null hypothesis
is correct, we could just reject it wrongly by chance. This is called the Type 1
error. Moreover, when the alternative hypothesis is correct (the null is wrong), we
might also fail to reject the null hypothesis by chance. This is called the Type 2
error.

There are two types of mistakes that we are worried about:

• Type-I error: Rejecting H0 when it is true. (This is the problem with test
1.)

• Type-II error: Accepting H0 when it is false. (This is the problem with
test 3.)

Accept H0 Reject H0

Truth is H0 Correct decision Type 1 error
Truth is H1 Type 2 error Correct decision
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Let T ( ~X) ≡ T (X1, . . . , Xn) denote the test statistic, and let 1(T ( ~X) ∈ R) be the
test, where R is the rejection region. The null hypothesis is H0 : θ ∈ S0, and the
alternative hypothesis is H1 : θ /∈ S0. Then:

P (type I error|θ) = P (T ( ~X) ∈ R |θ) for θ ∈ S0

P (type II error|θ) = P (T ( ~X) 6∈ R |θ) for θ ∈ Sc0

1.1. Example

X1, X2 ∼i.i.d Bernoulli with probability p.

• Test H0 : p = 3
4

vs. H1 : p 6= 3
4
.

• Consider the test 1
(
X1+X2

2
6= 1
)

or equivalently, 1
(
X1+X2

2
∈ {0, 1

2
}
)
.

• Type I error: Rejecting H0 when p = 3
4
.

P(Type I error) = P(X1+X2

2
6= 1|p = 3

4
) = P(X1+X2

2
= 0|p = 3

4
)+ P(X1+X2

2
=

1
2
|p = 3

4
) = 1

16
+ 3

8
= 7

16
= 0.4375.

• Type II error: Accepting H0 when p 6= 3
4

X1 +X2

2
=

 0 with prob (1− p)2

1
2

with prob 2(1− p)p
1 with prob p2

Therefore, P(Type II error) = P(X1+X2

2
= 1|p 6= 3

4
) = p2, where p 6= 3

4
.

Type-2 error here depends on what the true value of p is. Therefore when the true
value of p is near zero, type-2 error is small.

2. Power function

More generally, Type-I and Type-II errors are summarized in the power func-
tion.

Definition: Suppose H0 : θ ∈ S0 and H1 : θ ∈ Sc0. Let the test statistic be

T (X1, . . . , Xn), and the test be 1(T ( ~X) ∈ R), where R is the rejection region. The

power function of the test is defined by β(θ) = P (T ( ~X) ∈ R|θ).

We can interpret the power function as follows. Suppose H0 : θ ∈ S0, then
maxθ∈S0 β(θ) is the maximum Type-1 error. The Type-2 error can also be obtained
from the power function as 1− β(θ) for θ /∈ S0.
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The name power function comes from the fact that a test that has a high Type-2
error is said to have low power (the test accepts too often and cannot discriminate
the null from the alternative).

Example: Consider the previous example where X1, X2 ∼i.i.d Bernoulli with prob-
ability p. Let H0 : p = 3

4
vs. H1 : p 6= 3

4
. The test statistic is T = X1+X2

2
, while the

rejection region is R = {0, 1
2
}.

The Power Function of this test is β(p) = P
(
X1+X2

2
∈ {0, 1

2
}|p
)

= 1 − p2. Graph
the power function as a function of p.

What can we say from this power function?

• β(3
4
) is the Type I error, and 1− β(p) for all p 6= 3

4
is the Type-II error.

• A good test should have both low Type I and Type II errors.

• In general for H0 : θ ∈ S0 vs. H1 : θ /∈ S0, a good statistical test has a power
function that is low for θ ∈ S0 and high for θ /∈ S0.

Consider a different test: 1
(
X1+X2

2
= 0
)
? We can use power function to compare

the two tests. For this test, the power function is β2(p) = (1 − p)2. When we plot
this power function alongside the previous one, we see that β(p) = 1− p2 > β2(p) =
(1 − p)2 for p ∈ (0, 1). As such, the power function β2(p) = (1 − p)2 lies below the
power function β(p) = 1− p2.

This means that the second test has a lower Type-1 error, but the Type-2 error is
higher. Thus, we say that the first test is a higher powered, more discriminating
test.

2.1. Example: Binomial power function

Let X ∼ Binomial(5, θ). Consider testing H0 : θ ≤ 1
2

versus H1 : θ > 1
2
. Consider

the test 1(X = 5), i.e. we reject H0 if and only if all successes are observed. The
power function for this test is:

β1(θ) = P (X = 5|θ) = θ5

Plotting the power function for this test, the maximum Type 1 error is 0.0312, and
occurs at θ = 1

2
.1 However the Type 2 error is large: at θ = 0.75, the Type-2 error

is 1− β(0.75) = 1− 0.24 = 0.76. This test appears to reject too infrequently.

1 1
25 = 0.0312
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Consider another test that rejects H0 if and only if X = 3, 4, 5. The power function
for this test is:

β2(θ) = P (X = {3, 4, 5}|θ) =

(
5

3

)
θ3(1− θ)2 +

(
5

4

)
θ4(1− θ) + θ5

Plotting this power function, the Type 2 error is now lower, but at the expense of a
larger Type 1 error. This test has a much higher power than the first test, but the
Type-1 error is high.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1. The top line is the power function θ5 +5(1−θ)θ4 +10(1−
θ)2θ3, while the bottom line is the function θ5. The horizontal axis is
θ.

By varying the rejection region, we obtain different magnitudes of Type-1 errors.
Depending on the desired Type-1 or Type-2 errors, we then choose the appropriate
rejection region.

2.2. Example: Uniform power function

X1, . . . , Xn ∼ U [0, θ].

Test H0 : θ ≤ 2 versus H1 : θ > 2. Derive β(θ) for the Likelihood Ratio Test
1(λ(x) < c). Recall previously that:

λ(x) =

{
1 if max(x1, . . . , xn) ≤ 2

0 otherwise.

Hence, for 0 < c < 1:
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β(θ) = P (λ(X) < c|θ)
= P (max(X1, . . . , Xn) > 2|θ)
= 1− P (max(X1, . . . , Xn) ≤ 2|θ)

Since Xi ∼ U [0, θ],

P (Xi ≤ 2|θ) =

{
2
θ

for θ ≥ 2

1 for θ < 2

β(θ) = 1− P (max(X1, . . . , Xn) ≤ 2|θ)

=

{
1−

(
2
θ

)n
for θ ≥ 2

0 for θ < 2

Graph the power function. The power function shows that this is a good test,
especially when the sample size is large.

3. Level and size of a test

Researchers are often more concerned with Type-I error (i.e. not rejecting the null
hypothesis unless overwhelming evidence against it). Type-2 error is a secondary
concern.

This motivates the definition of size and level of a test.

• A test with power function β(θ) is a size α test if maxθ∈S0 β(θ) = α.

• A test with power function β(θ) is a level α test if maxθ∈S0 β(θ) ≤ α.

• For 0 ≤ α ≤ 1.

• Level α tests consist of tests that have size α or less.

Reflecting perhaps the “conservative” bias, researcher often use tests of size α =
0.05, or 0.10.

A size α test means that you will never commit a Type-1 error greater than α. Of
course this says nothing about the power of the test.

3.1. Size of Likelihood Ratio tests

For a Likelihood Ratio Test 1(λ(x) < c), the desired size can be controlled and
achieved by manipulating c. That is, if we desire a α = 0.05 Likelihood Ratio Test,
then choose c such that maxθ∈S0 P (λ(X) < c|θ) = α.
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3.1.1. Example 1

Recall previously that X1, . . . , Xn ∼i.i.d N (θ, 1), and we are testing H0 : θ = θ0

versus H1 : θ 6= θ0. The Likelihood Ratio Test is 1(λ(X) < c), where λ(X) =
exp

(
−n

2
(X̄n − θ0)2

)
and X̄n is the sample mean.

max
θ∈S0

P

(
exp
(
−n

2
(X̄n − θ0)2

)
< c

∣∣∣∣ θ) = 0.05

max
θ∈S0

P

(
|X̄n − θ0| >

√
− 2

n
log c

∣∣∣∣ θ
)

= 0.05

P

(
|X̄n − θ0| >

√
− 2

n
log c

∣∣∣∣ θ = θ0

)
= 0.05

Conditional on θ = θ0, we have X̄n ∼ N (θ0,
1
n
), and

√
n(X̄n − θ0) ∼ N (0, 1).

Therefore we can then find c such that: P
(
|
√
n(X̄n − θ0)| >

√
−2 log c

)
= 0.05

according to the standard Normal distribution. It follows that Φ(−
√
−2 log c) =

0.05/2, and hence, c = exp(−1
2
Φ−1(0.025)2) = 0.1465, where Φ is the cdf of the

standard Normal distribution, and Φ−1 is its inverse cdf.

For general α, the critical value is determined as c = exp(−1
2
Φ−1(α

2
)2).

3.1.2. Example 2

X1, . . . , Xn ∼i.i.d U [0, θ].

Test H0 : θ = 2 vs. H1 : θ 6= 2.

The Likelihood Ratio Test Statistics is:

λ(x) =

{
0 if max(x1, . . . , xn) > 2(

max(x1,...,xn)
2

)n
otherwise

For a Likelihood Ratio test, 1(λ(x) ≤ c), the number c will determine the size of
the test.
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α =P (λ(X) ≤ c|θ = 2)

α =P (

(
max(X1, . . . , Xn)

2

)n
≤ c|θ = 2)

α =P (max(X1, . . . , Xn) ≤ 2c1/n|θ = 2)

α =
(
c1/n

)n
c =α

3.2. Size of t-tests

X1, . . . , Xn ∼i.i.d f(x|µ), where µ ≡ E[X] is the population mean.

H0 : µ ≤ µ0 versus H1 : µ > µ0

Recall the t-test, where Zn =
√
n(X̄n−µ0)

Sn
, X̄n is the sample mean, and Sn is the

sample standard deviation. The (one-sided) t-test is 1(Zn > c) for some c.

The power function,

βn(µ) = P (Zn > c|µ)

βn(µ) = P

(√
n(X̄n − µ0)

Sn
> c

∣∣∣µ)
= P

(√
n(X̄n − µ)

Sn
−
√
n(µ0 − µ)

Sn
> c

∣∣∣µ)
Then, consider the asymptotic power function,

lim
n→∞

βn(µ) =

{
0 for µ < µ0

1− Φ(c) for µ = µ0

To see this, when µ < µ0,
√
n(µ0−µ)
Sn

will diverge to ∞ with probability 1, hence
√
n(X̄n−µ)
Sn

−
√
n(µ0−µ)
Sn

will diverge to −∞. When µ = µ0, we have
√
n(X̄−µ)
Sn

→d N (0, 1)
as n→∞, by the Central Limit Theorem.

Therefore, asymptotically, the maximum type-1 error occurs at µ = µ0. Then,
the (asymptotic) critical value c is obtained as α = maxµ≤µ0 limn→∞ βn(µ) = 1 −
Φ(c).

α = 1− Φ(c)

c = Φ−1(1− α)
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c is the (1− α)-th quantile of the standard normal distribution. You can get these
from the usual tables.

For α = 0.025, then c∗ = 1.96. For α = 0.05, then c∗ = 1.64.

3.2.1. p-values

For the t-tests, the smaller the size of a test, the more conservative the test is (since
the Type-1 error is smaller), the harder it is to reject the null. If the size of a test
is zero, then we would never reject the null hypothesis. Thus, rejecting the null at
size α = 0.01 constitutes a stronger evidence against the null, compared to rejecting
the null at size α = 0.05.The p-value of a test is the smallest size such that the null
would still be rejected.

The notion of p-values applies mainly to t-tests. Let α denote the size of a test. The
outcome of a test has a p-value given by p∗ if p∗ is the smallest size such that the null
is still rejected. That is, we would reject the null hypothesis under all corresponding
tests that have size α ≥ p∗. While the size (and the critical region) determines
when to reject the null, the p-values can tell us “how much” you reject the null. The
smaller the p-value, the greater the evidence against the null.

Consider a size α one-sided test before, H0 : µ ≤ µ0 vs. H1 : µ > µ0. Let Z be the
one-sided t-test statistic . The null is rejected when z ≥ Φ−1(1− α), where z is the
realized test statistic. When α is smaller, Φ−1(1 − α) becomes larger. Therefore,
finding the smallest α such that the null is still rejected is equivalent to solving for
α such that z = Φ−1(1 − α). Therefore, the p-value, denoted as p∗, is defined as
p∗ = 1 − Φ(z), where Φ is the cdf of the standard Normal distribution. The larger
the t-test statistic value z is, the smaller the p-value.

4. Size of Likelihood Ratio tests using asymptotic approximation

We can use asymptotic approximation in order to determine the approximate critical
regions for many common test statistics.

For the Likelihood Ratio test statistics, it can be difficult to derive its sampling
distribution. We use the following result.

Wilks’ Theorem: Let X1, . . . , Xn ∼i.i.d f(x|θ). Hypothesis test: H0 : θ ∈ S0 vs.
H1 : θ /∈ S0. Let λ(X1, . . . , Xn) be the Likelihood Ratio Test statistics. Then under
H0, as n→∞:

−2 log λ(X1, . . . , Xn)
d→ χ2

1.
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Note: χ2
1 denotes a random variable from the Chi-squared distribution with 1 degree

of freedom. If Z ∼ N(0, 1), then Z2 ∼ χ2
1. Clearly, χ2 random variables only have

positive support.

Wilks Theorem holds true under some assumptions. The theorem assumes i.i.d.
data generating process. Moreover, the theorem will not work when the unrestricted
likelihood function is maximized at a corner, and not at an interior solution. In
another words, the MLE is not obtained through first order conditions, such as in
the Uniform distribution examples above.

4.1. Example 1

If the data-generating process is Normal, then this asymptotic approximation holds
exactly with finite n.

X1, . . . , Xn ∼i.i.d N (θ, 1)

Test H0 : θ = θ0 vs. H1 : θ 6= θ0.

The likelihood ratio test statistic is:

λ(X1, . . . , Xn) = exp
(
−n

2
(X̄ − θ0)2

)
−2 log λ(X1, . . . , Xn) = n(X̄ − θ0)2

Under the null hypothesis that θ = θ0, we have
√
n(X̄ − θ0) ∼ N (0, 1), it follows

that −2 log λ(X1, . . . , Xn) = n(X̄ − θ0)2 ∼ χ2
1.

4.2. Example 2

X1, . . . , Xn ∼ i.i.d. Bernoulli with probability p. Test H0 : p = p0 vs. H1 : p 6=
p0.

The likelihood function is L(p|x1, . . . , xn) =
∏n

i=1 p
xi(1−p)1−xi = p

∑
i xi(1−p)n−

∑
i xi .

Y =
∑n

i=1Xi.

λ(X1, . . . , Xn) =
(p0)Y (1− p0)n−Y(
Y
n

)Y (n−Y
n

)n−Y .
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The sampling distribution of this LR test statistic is not analytically tractable, so
we appeal to its asymptotic distribution. For an asymptotic size α:

α = P (λ(X1, . . . , Xn) ≤ c | p = p0)

= P (−2 log λ(X1, . . . , Xn) ≥ −2 log c | p = p0)

= P (χ2
1 ≥ −2 log c)

= 1− Fχ2
1
(−2 log c)

⇒c = exp

(
−1

2
F−1
χ2
1

(1− α)

)
.

For instance, for α = 0.05, then F−1
χ2
1

(1− α) = 3.841 and c∗ = 0.1465. For α = 0.10,

then F−1
χ2
1

(1 − α) = 2.706 and c∗ = 0.2584. Note, these (asymptotic) critical values

do not depend on p0. Regardless of what our null/alternative hypotheses are, we
always have these critical values.

Let’s verify in R and Python using simulations that the following

λ( ~X) =
(p0

X̄

)∑Xi

(
1− p0

1− X̄

)n−∑Xi

has the asymptotic distribution −2 log λ( ~X)→ χ2
1 under the null hypothesis.

5. Uniformly Most Powerful test

(*Optional reading)

The Likelihood Ratio Test is one of the most commonly used test because under
some conditions, it is optimal.

Let H0 : θ ∈ Θ0 versus H1 : θ /∈ Θ0.

Consider all level α tests, that is, the Type-1 error (with respect to the null hypoth-
esis above) is at most α.

Let β(θ) be the power function of a level-α test that is called the Uniformly Most
Powerful test, then β(θ) ≥ β′(θ) for all θ /∈ Θ0, where β′(θ) are any other power
functions that are level-α.

5.1. Neyman-Pearson Lemma

For simple hypothesis tests, the Neyman-Pearson Lemma says that the Likelihood
Ratio Test is the Uniformly Most Powerful test.
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H0 : θ = θ0 versus H1 : θ = θ1.

X1, . . . , Xn ∼ f(x1, . . . , xn|θ) (need not be i.i.d)

Consider the test statistics

λ(x1, . . . , xn) =
f(x1, . . . , xn|θ0)

f(x1, . . . , xn|θ1)
(1)

We reject the null if λ(x1, . . . , xn) < c, for some c > 0. Here c can be greater than
1. Suppose c is such that P (λ(x1, . . . , xn) < c|θ = θ0) = α.

Neyman-Pearson Lemma says that any test that satisfies the above is a Uni-
formly Most Powerful level α test. Conversely, every Uniformly Most Powerful
satisfy the above, except for some pathological cases.
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