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1. Interval estimation

In point estimation, we report a point value for the unknown parameter.

In interval estimation, we report a range/interval of values for the unknown param-
eter. What range of values should we report?

For example, suppose we are interested in the population mean. A good point
estimator is the sample mean X̄. There are many interval estimators, such as [4, 6],
[X̄ − 1, X̄ + 1], [X̄ − 5, X̄ + 2].

Why should we report an interval, why not just the point estimate X̄? An interval
estimate comes with additional confidence that our assertion is correct.

Definition 9.1.1: Consider a model where ~X = X1, . . . , Xn has the joint density
f(x1, . . . , xn|θ). An interval estimator for the parameter θ is a pair of functions

L( ~X) and U( ~X) such that L( ~X) ≤ U( ~X) for all ~X. When the observed data is
x1, . . . , xn, the inference L(x1, . . . , xn) ≤ θ ≤ U(x1, . . . , xn) is made.

Note:

• Both L( ~X) and U( ~X) are random variables, so that C( ~X) ≡ [L( ~X), U( ~X)]
is a random interval.

• [L( ~X), U( ~X)] is a two-sided interval. Sometimes, we seek (−∞, U( ~X)] or

[L( ~X),∞), which are one-sided intervals.

Suppose X1, . . . , X4 ∼ i.i.d N(µ, 1), and we want to estimate the population mean
µ. When we use the point estimator X̄, the probability that it is correct is zero,
since P (X̄ = µ) = 0. However with an interval estimator, we now have a non-
zero probability of being correct. The probability that µ is covered by the interval
[X̄ − 1, X̄ + 1] is:
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P (µ ∈ [X̄ − 1, X̄ + 1]) = P (X̄ − 1 ≤ µ ∩ µ ≤ X̄ + 1)

= P (X̄ − µ ≤ 1 ∩ −1 ≤ X̄ − µ)

= P (−1 ≤ X̄ − µ ≤ 1)

= 0.9544

Where we know that X̄ − µ ∼ N (0, 1
4
).

1.1. Coverage probability

Let X1, . . . , Xn ∼ i.i.d f(x|θ), where θ is the unknown parameter of interest.

Definition 9.1.4: the coverage probability of an interval estimator is Pθ

(
θ ∈ [L( ~X), U( ~X)]

)
.

This is the probability that the random interval [L( ~X), U( ~X)] covers the true θ. The
probability above is computed using the pdf f(x|θ), hence its dependence on θ.

In the expression for the coverage probability, θ is fixed and not random, but L( ~X)

and U( ~X) are random variables. So Pθ

(
θ ∈ [L( ~X), U( ~X)]

)
means Pθ

(
L( ~X) ≤ θ ∩ U( ~X) ≥ θ

)
.

One problem with the coverage probability is that it can vary depend on what θ
is.

Definition 9.1.5: For an interval estimator [L( ~X), U( ~X)] of a parameter θ, the

confidence coefficient ≡ minθ Pθ

(
θ ∈ [L( ~X), U( ~X)]

)
.

The confidence coefficient does not depend on θ.

Usually, we use the term confidence interval to refer to a combination of an
interval estimate, along with a measure of confidence (such as the confidence coef-
ficient). Hence, a confidence interval is a statement like “θ is between 1.5 and 2.8
with probability 80%.”

1.2. Example

X1, . . . , Xn ∼ i.i.d. U [0, θ], and Yn ≡ max(X1, . . . , Xn). Consider two interval
estimators

(i) [aYn, bYn], where 1 ≤ a < b

(ii) [Yn + c, Yn + d], where 0 ≤ c < d.

What is the confidence coefficient of each?
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(i) The coverage probability

Pθ(θ ∈ [aYn, bYn]) = Pθ(aYn ≤ θ ≤ bYn)

= Pθ

(
θ

b
≤ Yn ≤

θ

a

)
.

From before, we know that density of Yn is f(y) = 1
θn
nyn−1, for y ∈ [0, θ], so

that

Pθ

(
θ

b
≤ Yn ≤

θ

a

)
=

1

θn

∫ θ
a

θ
b

nyn−1dy

=
1

θn

[(
θ

a

)n
−
(
θ

b

)n]
=

(
1

a

)n
−
(

1

b

)n
Since coverage probability is not a function of θ, then this is also confidence coeffi-
cient.

Suppose n = 100 and we desire a confidence coefficient of 0.95, then one such
interval estimator is [max(X1, . . . , Xn), 1.03 max(X1, . . . , Xn)],1 which is a rather
narrow interval. This interval gets narrower as n increases.

(ii) The coverage probability

Pθ(θ ∈ [Yn + c, Yn + d]) = Pθ(Yn + c ≤ θ ≤ Yn + d)

= Pθ(θ − d ≤ Yn ≤ θ − c)

=
1

θn

∫ θ−c

θ−d
nyn−1dy =

1

θn
((θ − c)n − (θ − d)n)

so that coverage probability depends on θ.

But note that limθ→∞
1
θn

((θ − c)n − (θ − d)n) = 0, so that confidence coefficient is
0.

2. Methods of Finding Interval Estimators

General principle: “invert” a test statistic.

Consider the following example: X1, . . . , Xn ∼ i.i.d. from a population with mean
µ and variance σ2.

1a = 1, 0.95 = 1− b−n, and b = (0.05)−1/n.
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Consider the test H0 : µ = µ0 versus H1 : µ 6= µ0 The t-test statistic is Zn =√
n(X̄−µ0)

σ̂
, and we reject the null when |Zn| > c for a critical value c. For a two-

sided t-test of size 0.05, the critical value is c = 1.96, as such, the decision rule is
1(|Zn| > 1.96).

That is, the rejection region is chosen such that P (|Zn| > 1.96
∣∣µ = µ0) = 0.05. We

then have:

P (−1.96 ≤ Zn ≤ 1.96
∣∣µ = µ0) = 0.95

P

(
−1.96 ≤

√
n(X̄ − µ0)

σ̂
≤ 1.96

∣∣∣µ = µ0

)
= 0.95

P

(
−1.96σ̂√

n
≤ X̄ − µ0 ≤

1.96σ̂√
n

∣∣∣µ = µ0

)
= 0.95

P

(
X̄ − 1.96σ̂√

n
≤ µ0 ≤ X̄ +

1.96σ̂√
n

∣∣∣µ = µ0

)
= 0.95

Because the statement above is true for any arbitrary µ0, it holds true for the true
unknown µ, so we can replace µ0 with µ. Therefore,

P

(
X̄ − 1.96σ̂√

n
≤ µ ≤ X̄ +

1.96σ̂√
n

∣∣∣µ = µ

)
= 0.95

P

(
X̄ − 1.96σ̂√

n
≤ µ ≤ X̄ +

1.96σ̂√
n

)
= 0.95

The interval estimator
[
X̄ − 1.96σ̂√

n
, X̄ + 1.96σ̂√

n

]
has a coverage probability of 0.95, it

covers the true µ with probability 0.95 due to sampling variation.

2.1. Inverting a Likelihood Ratio test

Let X1, . . . , Xn be i.i.d from f(x|λ), where f(x|λ) = λe−λx for x ≥ 0. This is the
Exponential distribution with parameter λ. We want to derive an interval estimator
for λ.

Consider the Likelihood Ratio Test of H0 : λ = λ0 versus H1 : λ 6= λ0.

The likelihood function is L(λ|x1, . . . , xn) =
∏n

i=1 λe
−λxi = λne−λ

∑n
i=1 xi . The Max-

imum Likelihood estimator is obtained via first order condition as 1/X̄.

Given n realized random sample x1, . . . , xn from the population, the Likelihood
Ratio Test Statistic is:
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λn0e
−λ0

∑n
i=1 xi

x̄−ne−n
= (x̄λ0)nene−λ0nx̄

Suppose the critical value c is such that the test has size 0.05, i.e:

P ((X̄λ0)nen−λ0nX̄ ≤ c |λ = λ0) = 0.05

Using asymptotic approximation2, we know that −2 log
(
(X̄λ0)nen−λ0nX̄

)
→ χ2

1 un-
der the null hypothesis as n → ∞. Therefore, we can find the critical value c∗ as
P (χ2

1 ≥ −2 log c∗) = 0.05. Solving for c∗, we get c∗ = 0.1465.

Now we have:

P ((X̄λ0)nen−λ0nX̄ > 0.1465 |λ = λ0) = 0.95

P ((X̄λ)nen−λnX̄ > 0.1465) = 0.95

In the last line above, we replace λ0 with λ (because the above holds true for any
arbitrary λ0, in particular, it holds true for the true unknown λ).

Therefore, the interval estimator {λ : (X̄λ)nen−λnX̄ > 0.1465} has a 0.95 coverage
probability.

How does this interval estimator look like with real data? Suppose our dataset
is such that the sample mean is 2.0, and the sample size is n = 20. We can
solve for (X̄λ)nen−λnX̄ > 0.1465 in terms of λ,3 which gives us an interval estimate
of 0.311642 < λ < 0.752246. Now if the sample size is n = 100, then we get
0.408297 < λ < 0.604503, a narrower interval around 1

2
.

We can further visualize that the function (X̄λ)nene−λnX̄ is unimodal in λ, and so
the interval estimate takes the form of a compact connected set. Knowing that the
interval estimate takes the form of a connected interval, we can solve for the root of
the equation (X̄λ)nen−λnX̄ = 0.1465.

2There are other ways to solve for the critical value P ((X̄λ0)nen−λ0nX̄ ≤ c |λ = λ0) = 0.05.

For exponential variables,
∑
Xi ∼ Gamma(n, λ0), therefore (X̄λ0)nen−λ0nX̄ is a transformation

of the Gamma distribution. We can also use simulation to obtain the density of (X̄λ0)nen−λ0nX̄

under the null that λ = λ0.
3For example, using Mathematica’s Reduce command
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2.2. Another example

Consider the example from the previous lecture.

X1, . . . , Xn ∼ i.i.d. Bernoulli with probability p. Test H0 : p = p0 vs. H1 : p 6=
p0.

The likelihood function is L(p|x1, . . . , xn) =
∏n

i=1 p
xi(1−p)1−xi = p

∑
i xi(1−p)n−

∑
i xi .

λ( ~X) =
(p0

X̄

)nX̄ (1− p0

1− X̄

)n−nX̄
Using the same asymptotic approximation:

0.05 = P (λ( ~X) ≤ 0.1465
∣∣ p = p0)

0.95 = P

((p0

X̄

)nX̄ (1− p0

1− X̄

)n−nX̄
> 0.1465

∣∣∣ p = p0)

)

0.95 = P

(( p
X̄

)nX̄ ( 1− p
1− X̄

)n−nX̄
> 0.1465)

)

Therefore, the interval estimator for p that has a coverage probability of 0.95 is:

{
0 ≤ p ≤ 1 :

( p
X̄

)nX̄ ( 1− p
1− X̄

)n−nX̄
> 0.1465

}
To see what this confidence interval looks like, plug in some numbers.4 Say x̄ = 0.4
and n = 10, then 0.145 < p < 0.700. With x̄ = 0.1, n = 10, we get a narrower
interval: 0.00595 < p < 0.372. Similarly with x̄ = 0.4 and n = 100, we get 0.307 <
p < 0.497, but with x̄ = 0.01 and n = 100, we get 0.000569 < p < 0.0433.

2.3. Bayesian intervals

Confidence interval is defined as the probability that an interval covers the param-
eter, not the probability that the parameter lies within the interval. This is to
emphasize that the random quantity is the interval, not the parameter. However,
in the Bayesian setup, we have the posterior distribution of the parameter f(θ|x),
which allows us to ask what is the probability that θ lies within an interval.

4Reduce[ReplaceAll[((1 - p)/(1 - x))^(n - n x) (p/x)^(n x) > 0.1465,

{x -> 0.4, n -> 100}] && p > 0 && 1 > p, p]
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Let C be a 95% credible set for θ, and let f(θ|x) be the posterior distribution,
then: ∫

C

f(θ|x) dθ = 0.95

For example, recall X1, . . . , Xn are iid ∼ N (θ, σ2), and suppose that the prior dis-
tribution is π(θ) = N (µ, τ 2), assuming that τ, µ, σ are known. Then the posterior

distribution θ|x ∼ N
( n
σ2
x̄+ 1

τ2
µ

n
σ2

+ 1
τ2

,
(
n
σ2 + 1

τ2

)−1
)

.

In general, because there are many possible intervals C such that
∫
C
f(θ|x) dθ =

1 − α, there are many possible 1 − α credible sets. The simplest one would be
symmetric around the posterior mean.

One common way to select among the possible credible sets is to select the shortest
credible intervals. That is, the shortest length interval C such that

∫
C
f(θ|x) dθ =

1 − α. This is special region is called the Highest Posterior Density (HPD) re-
gion.

If the posterior density is unimodal, then this is a straightforward task. The 1− α
HPD region for θ is {θ : f(θ|x) ≥ k} such that:∫

{θ:f(θ|x)≥k}
f(θ|x) dθ = 1− α

3. Monte Carlo method (simulation-based methods)

3.1. Monte Carlo sampling

Let X ∼ f(x). We can approximate P (a ≤ X ≤ b) using simulations. For example,
this arises in hypothesis testing when we wish to compute the power functions.

Draw x1, . . . , xS from the pdf f(x), S should be large. Then,

P (a ≤ X ≤ b) ≈ 1

S

S∑
s=1

1(a ≤ xs ≤ b)(1)

Drawing from a density can be done using Inverse Probability Transform, which
consists of generating U [0, 1] and plugging into the inverse cdf F−1. For multivariate
densities, one would use the Markov Chain Monte Carlo method.

We can also approximate E[g(X)] using Monte Carlo sampling:
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E[g(X)] =

∫ ∞
−∞

g(x)f(x) dx ≈ 1

S

S∑
s=1

g(xs)(2)

In general, given the data-generating process X1, . . . , Xn ∼ f(x1, . . . , xn), and given
the statistic or estimator T (X1, . . . , Xn). We can approximate the sampling distri-
bution of T (X1, . . . , Xn) using Monte Carlo sampling.

For s = 1, . . . , S, we draw xs = (x1, . . . , xn) from the joint pdf f(x1, . . . , xn).

P (a ≤ T (X1, . . . , Xn) ≤ b) ≈ 1

S

S∑
s=1

1(a ≤ T (xs) ≤ b)(3)

E[g(T (X1, . . . , Xn))] ≈ 1

S

S∑
s=1

g(T (xs))(4)

Consider again the example: X1, . . . , Xn ∼ i.i.d. Bernoulli with probability p. Test
H0 : p = p0 vs. H1 : p 6= p0.

λ( ~X) =
(p0)nX̄ (1− p0)n−nX̄(
X̄
)yn (

1− X̄
)n−nX̄ .

We can use simulation to determine the exact critical value such that P (λ( ~X) ≤
c∗|p = p0) = 0.05. We can use simulation to verify that −2 log λ( ~X)→ χ2

1 under the
null hypothesis. Given the asymptotic critical value of c∗ = 0.1465, we can compute
the power function P (λ( ~X) ≤ c∗) as a function of p.

4. Importance sampling

Importance sampling is a more efficient form of Monte carlo sampling. For example,
we want to calculate P (X > 3), where X ∼ N (0, 1). Let H = 1(X > 3), then

P (X > 3) = E[H] ≈ 1
S

∑S
s=1 1(xs > 3).

Suppose we draw 100 random samples from N (0, 1), how many are above 3? None!
We are “wasting” a lot of draws by not drawing from important regions.

Rather than sampling from f , consider sampling from a different probability density
function, g, as the proposal distribution.

Let X ∼ f(x), we have E[h(X)] =
∫
h(x)f(x) dx. Consider some other arbitrary

pdf g(x) (integrates to one under the same support as f(x)).
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E[h(X)] =

∫
h(x)f(x) dx(5)

=

∫
h(x)

f(x)

g(x)
g(x) dx(6)

= Eg
[
h(X)

f(X)

g(X)

]
(7)

f(x)
g(x)

is the importance weight. In this example, even though we want to calculate

P (X > 3) for X ∼ N (0, 1), it is more efficient to sample from N (3, 2) and apply the
importance sampling weights. Therefore, draw x1, . . . , xS from the N (3, 2).

P (X > 3) ≈ 1

S

S∑
s=1

h(xs)
f(xs)

g(xs)
(8)

Where f is the density ofN (0, 1) and g is the density ofN (3, 2), and h(xs) = 1(xs >
3). Compare the accuracy of monte carlo integration with and without importance
weight, and compare them to the ground truth.

Another example, you want to simulate the mean of a standard normal distribution,
truncated to the unit interval [0,1]. That is, E[X|X ∈ [0, 1]]. The brute-force way
is to sample from N (0, 1) and throw away those samples outside of [0, 1], i.e.

E[X|X ∈ [0, 1]] ≈
∑S

s=1 xs1(0 < xs < 1)∑S
s=1 1(0 < xs < 1)

(9)

Importance sampling: let f(x) = φ(x)1(x∈[0,1])∫ 1
0 φ(x) dx

be the sampling density of X|X ∈
[0, 1]. Then, let g(x) = 1 for x ∈ [0, 1]. That is, we draw from U [0, 1], then apply

the importance weight f(x)
g(x)

.

Draw x1, x2, . . . , xS from U [0, 1]. For each draw, the importance weight is ws =

f(xs) = φ(xs)∫ 1
0 φ(x) dx

= φ(xs)
0.34135

. The simulated mean is 1
S

∑
xsws.

Probabilities and expectation involving multivariate Normal can be difficult to com-
pute, it involves multi-dimensional integration. Importance sampling is crucial here.
In fact, it has been given a name – GHK simulator – enables us to efficiently draw
from truncated multivariate normal distribution.
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5. Bootstrap methods

This section is accompanied by the R Markdown “bootstrap.Rmd” or the Python
Jupyter Notebook.

Given a random sample X1, . . . , Xn, consider a statistic T (X1, . . . , Xn). Statistical
inference relies on knowing the sampling distribution of T (X1, . . . , Xn). For example,
in hypothesis testing, we need to know the distribution of the test statistic in order
to determine the rejection region.

There are several ways to determine the sampling distribution.

(i) Make assumption about the data-generating process. Assume that the data
are generated from a family of distributions f(x1, . . . , xn|θ). Then, use Monte
Carlo simulation to sample from f(x1, . . . , xn|θ) to determine the sampling
distribution of T (X1, . . . , Xn) at various values of θ.

(ii) Simple transformation of random variables. In some cases, Y = T (X1, . . . , Xn)
is a simple transformation (convolution) of random variables, for example,
sum of independent exponentials is a gamma distribution, sum of indepen-
dent normals is a normal distribution.

(iii) Asymptotic approximation. T (X1, . . . , Xn) might have a known asymptotic
distribution. If T is the sample mean, then it is asymptotically normal.
The likelihood ratio test statistic has a chi-squared distribution asymptoti-
cally, Maximum Likelihood estimator is asymptotically Normal with variance
equals to the inverse of the Fisher information matrix, etc.

(iv) Bootstrapping. Also, called non-parametric bootstrapping, to emphasize
that we do not need to make specific assumptions about the form of the
data-generating process.

5.1. Bootstrap algorithm

(1) Given sample x1, . . . , xn. Treat sample as if it is the population and resample
many times from this sample to approximate sampling distribution.

(2) Draw n random samples with replacement from x1, . . . , xn. Call this a boot-
strapped sample x∗ = (x∗1, . . . , x

∗
n).

(3) Draw B number of bootstrapped samples x∗1,x
∗
2, . . . ,x

∗
B. Each bootstrapped

sample x∗b has n observations.

(4) Compute the statistic T using the bootstrapped samples, that is, (T (x∗1), . . . , T (x∗B)).
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(5) The empirical sampling distribution of the statistic T is approximated by
(T (x∗1), . . . , T (x∗B)).

Example. Consider the sample variance S2 = 1
n−1

∑n
i=1(Xi − X̄)2. We want to

know the distribution of the sample variance. We could assume that Xi is Normally
distributed, so that (n − 1)S2/σ2 ∼ χ2

n−1. We could rely on asymptotics: the

sample variance is asymptotically normal with
√
n(s2−σ2)

d−→ N (0, µ4−σ4), where
µ4 = E[(X − E[X])4], and σ4 = Var(X)2.

The third option is to use bootstrapping. Bootstrapping is useful in constructing
hypothesis test and confidence intervals. We see from our simulation exercise that
bootstrapping becomes more accurate when the sample size is large. When the
sample size is small, bootstrapping can be very misleading. Now if the sample size
is large, why don’t we just use the asymptotic distribution instead? In this example,
the asymptotic distribution is known – there are many cases where the asymptotic
sampling distribution is not known.

Bootstrapped standard errors of an estimator can be obtained by calculating the
standard deviation of the bootstrapped samples (T (x∗1), . . . , T (x∗B)). Moreover,
bootstrapped confidence intervals can be obtained using the percentiles of the boot-
strap distribution.

The theoretical properties of bootstrapped standard errors is beyond the scope of
here but under fairly general conditions, bootstrapped standard errors converge to
the true standard error

√
Var(T (X1, . . . , Xn)) as n → ∞ and B → ∞. Therefore,

the sample that we resample from must be large to begin with, and the number of
bootstrapped samples should also be large. In addition, it is also important that
the data is independently and identically distributed. A notable exception for when
bootstrap fails is when the statistic is an extreme-order statistic.
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