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1. Maximum Likelihood Estimators (MLE)

1.1. Likelihood function

Suppose X1, . . . , Xn are i.i.d random sample from a population with pdf f(x|θ),
where θ is an unknown vector of parameters that parameterize the pdf. The joint
density of X1, . . . , Xn is f(x1, . . . , xn) =

∏n
i=1 f(xi|θ).

Now suppose we observe a realization of the random sample which we denote as
X1 = x̃1, . . . , Xn = x̃n. Can we say that the likelihood of observing the realization
x̃1, . . . , x̃n is

∏n
i=1 f(x̃i|θ)? Yes, even though

∏n
i=1 f(x̃i|θ) is strictly a density, it

carries the connotation of a likelihood.1

The likelihood function of θ given that we observe the following data realized
from the data-generating process, X1 = x1, . . . , Xn = xn, is defined as:

L(θ|x1, . . . , xn) =
n∏
i=1

f(xi|θ)(1)

The log-likelihood function of θ given that we observe the realized data X1 =
x1, . . . , Xn = xn, is defined as:

L(θ|x1, . . . , xn) =
n∑
i=1

log f(xi|θ)(2)

1When ε is small, we can approximate P (x − ε ≤ X ≤ x + ε) as the area of a rectangle: the
height f(x) times the width 2ε. As such, 2εf(x) ≈ P (x − ε ≤ X ≤ x + ε) for arbitrarily small ε.
Moreover,

f(x1)

f(x2)
≈ P (x1 − ε ≤ X ≤ x1 + ε)

P (x2 − ε ≤ X ≤ x2 + ε)

Hence if f(x1) > f(x2), X is more likely to take values around x1 than x2.
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Here, we treat x1, . . . , xn is the observed data and it is therefore fixed, while θ is the
argument in the likelihood function that is varying.

1.2. Maximum likelihood estimators

The maximum likelihood estimate of θ given the data x1, . . . , xn is

θ̂ = argmax
θ

L(θ|x1, . . . , xn)(3)

Intuitively, we estimate θ by finding θ that maximizes the likelihood of observing
the given data.

θ̂ depends on the dataset (x1, . . . , xn), which is a realization of the random sample
X1, . . . , Xn. Hence the maximum likelihood estimator should be remembered as a
random variable. The definition of MLE is the same regardless of whether X is a
discrete or a continuous random variable.

1.3. Example: MLE of Normal parameters

X1, . . . , Xn ∼ i.i.d N (µ, 1)

Given the data X1 = x1, . . . , Xn = xn, the likelihood function is:

L(µ|x1, . . . , xn) =
n∏
i=1

1√
2π
e−(xi−µ)2/2

The log-likelihood function is:

L(µ|x1, . . . , xn) = n log
1√
2π
− 1

2

n∑
i=1

(xi − µ)2

max
µ

L(θ|x1, . . . , xn) = max
µ

n∑
i=1

−(xi − µ)2

Taking the first-order condition with respect to µ, we get
∑n

i=1(xi−µ) = 0. Solving
for µ, we obtain µ = 1

n

∑n
i=1 xi. To verify that the solution µ = 1

n

∑n
i=1 xi is a local

maximum, we check the second-order condition ∂L2
∂µ2

= −n < 0.

To verify that the solution is a global maximum, we check that µ = 1
n

∑n
i=1 xi is

the only solution satisfying the first-order condition, and at the boundaries of the
parameter space, the likelihood is strictly smaller.
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1.4. Example: MLE of Bernoulli parameters

X1, . . . , Xn ∼ i.i.d Bernoulli(p).

The likelihood function is

L(p|x1, . . . , xn) =
n∏
i=1

pxi(1− p)1−xi

logL(p|x1, . . . , xn) =
n∑
i=1

xi log p+ (1− xi) log(1− p)

= (
n∑
i=1

xi) log p+ log(1− p)(n−
n∑
i=1

xi)

Let x̄ = 1
n

∑n
i=1 xi. Taking the first-order-condition with respect to p,

max
0≤p≤1

L(p|x1, . . . , xn) =⇒ ∂L
∂p

=
nx̄

p
− n− nx̄

1− p
= 0 =⇒ p̂ = x̄

Checking the second-order condition, we have ∂2L
∂p2

= −nx̄
p2
− n−nx̄

(1−p)2 < 0. Note that

we maximize the likelihood within the range of the parameter space 0 ≤ p ≤ 1, and
that p̂ = x̄ is the global maximum within this parameter space.

1.5. Example: uniform distribution

X1, . . . , Xn ∼ i.i.d U [0, θ]

L(θ|x1, . . . , xn) =

{
(1
θ
)n if max(x1, . . . , xn) ≤ θ

0 if max(x1, . . . , xn) > θ or min(x1, . . . , xn) < 0

Assuming min(x1, . . . , xn) ≥ 0, the MLE of θ is

argmax
0≤θ

L(θ|x1, . . . , xn) = max(x1, . . . , xn)

1.6. Example: MLE for more than 1 parameter

X1, . . . , Xn ∼ i.i.d N (µ, σ2) with µ and σ2 unknown.

The likelihood functions is:
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L(µ, σ2|x1, . . . , xn) =
n∏
i=1

1√
2πσ2

e−(xi−θ)2/2σ2

The log-likelihood function is:

L(µ, σ2|x1, . . . , xn) = −n
2

log 2π − n

2
log σ2 − 1

2σ2

n∑
i=1

(xi − µ)2

The ML estimates µ̂ and σ̂2 satisfy the following first-order conditions:

∂L(µ, σ2|x)

∂µ

∣∣∣∣
µ=µ̂,σ2=σ̂2

=
1

σ̂2

n∑
i=1

(xi − µ̂) = 0(4)

∂L(µ, σ2|x)

∂σ2

∣∣∣∣
µ=µ̂,σ2=σ̂2

= − n

2σ̂2
+

1

2σ̂4

n∑
i=1

(xi − µ̂)2 = 0(5)

Therefore the ML solutions are µ̂ = 1
n

∑n
i=1 xi = x̄ and σ̂2 = 1

n

∑n
i=1(xi − x̄)2.

To further check that the solutions are local maximum, the second-order sufficient
condition requires that the Hessian matrix be negative definite at the estimate, i.e.
all eigenvalues are negative. When there are two parameters, this is equivalent to the
determinant of the Hessian matrix being positive and the second-order derivative
with respect to either one of the parameters be negative

1.7. Example: MLE for simple linear regressions

Let Yi ∼ N (a + bxi, 1) for i = 1, . . . , n, where α, β are unknown parameters, and
xi, i = 1, . . . , n are fixed numbers. This model describes Yi = a + bxi + εi for
i = 1, . . . , n and εi ∼ i.i.d N (0, 1).

The log-likelihood function is:

L(α, β|x1, y1, . . . , xn, yn) = n log
1√
2π
− 1

2

n∑
i=1

(yi − a− bxi)2

The first-order conditions for maximizing the log-likelihood function with respect to
a and b are:

4



MECO 7312 Lecture 8: Maximum Likelihood Estimation

n∑
i=1

(yi − a− bxi) = 0(6)

n∑
i=1

(yi − a− bxi)xi = 0(7)

Solving these two equations for a and b:

b̂ =
1
n

∑n
i=1 xiyi − x̄ȳ

1
n

∑n
i=1 x

2
i − x̄2

â = ȳ − b̂x̄

Where x̄ = 1
n

∑n
i=1 xi, and ȳ = 1

n

∑n
i=1 yi. The estimators recovered here are identi-

cal to the estimators obtained via Method of Moments (see last lecture).

Even though we obtain the same formulas for parameters of linear regressions, there
is a distinct difference between the MLE approach and the GMM approach. In
MLE, we have to make the assumption that ε is Normally distributed, whereas
in GMM, we do not have to make the assumption that ε is Normally distributed.
For this reason, GMM is known as a partial-information approach, while MLE is a
full-information approach.

1.8. Restricting the parameter space

When we maximize the likelihood function L(θ|x) with respect to θ, we need to
specify the range of θ in which to search for the maximum. For example, when esti-
mating a scale parameter like σ2, we maximize the objective function over positive
values.

As another example, to estimate the parameters of the Binomial distribution from
the dataset x1, x2, . . . , xn, we find an integer k that maximizes:

L(k, p|x) = Πn
i=1

(
k

xi

)
pxi(1− p)k−xi

We numerically search over k = {maxxi, 1 + maxxi, 2 + maxxi, . . . , N}. We cannot
take the first-order conditions here.
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1.9. Probit regression

Suppose Yi is a binary random variable. For example, Yi = 1 if a user i clicks
on the advertisement, and Yi = 0 otherwise. We want to model Yi (so as to be
able to predict it). Let Yi be a Bernoulli random variable, such that Yi = 1 with
probability p, and Yi = 0 with probability 1 − p. In addition, we parameterize the
probability p = g(α + βxi), for some unknown parameters α and β. Here, xi is a
feature/covariate/explanatory variable of the user i, say the age of the user i.

Because the probability p = g(α+ βxi) must be between 0 and 1, we need to pick a
function g such that g : R → [0, 1]. One such function is the cdf of N (0, 1), which
we denote by Φ(·). In another words, the model for the random variable Yi is:

Yi =

{
1 with probability Φ(α + βxi)

0 with probability 1− Φ(α + βxi)

Suppose we observe i.i.d realizations from this model: (y1, x1, y2, x2, . . . , yn, xn), how
do we estimate a and b?

The pdf of Yi is just the Bernoulli pdf:

f(yi) = Φ(α + βxi)
yi(1− Φ(α + βxi))

1−yi , yi ∈ {0, 1}

Because Yi are independent, the joint pdf is just:

f(y1, . . . , yn) =
n∏
i=1

Φ(α + βxi)
yi(1− Φ(α + βxi))

1−yi

Therefore the likelihood function is:

L(α, β|x,y) =
n∏
i=1

Φ(α + βxi)
yi(1− Φ(α + βxi))

1−yi

L(α, β|x,y) =
n∑
i=1

yi log(Φ(α + βxi)) +
n∑
i=1

(1− yi) log(1− Φ(α + βxi))

The Maximum Likelihood estimates of α and β are argmaxα,β L(α, β|x,y). There
is no analytical closed-form solution, however it can be shown that the likelihood
function is concave in α and β. Therefore standard numerical algorithms for op-
timization (such as Newton-Raphson method or stochastic gradient ascent) will
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converge rapidly to the unique maximum. Moreover, the gradient can be evaluated
easily as:

∇L(β0, β1) =

[ ∂L
∂β0
∂L
∂β1

]
=

n∑
i=1

(
yi

Φ(β0 + β1xi)
− 1− yi

1− Φ(β0 + β1xi)

)
· φ(β0 + β1xi)

[
1
xi

]
A different model called the Logit model uses the logistic function 1

1+e−a−bxi
to model

the probabilities.

1.10. Invariance property of MLE*

(Optional reading)

Suppose instead of maximizing L(θ|x) with respect to θ, we are interested in ob-
taining an estimate of η = τ(θ) from the likelihood function L(θ|x). For example,
η = 3θ−2

5
or η = log(θ).

Assuming τ is an invertible one-to-one function, then we can easily rewrite and
transform the likelihood function.

L(θ|x) =
n∏
i=1

f(xi|θ) =
n∏
i=1

f(xi|τ−1(η)) = L(τ−1(η)|x)

Suppose θ̂ = argmaxL(θ|x), and let η̂ = τ(θ̂), then η̂ also maximizes L(τ−1(η)|x).

The invariance property of MLE holds more generally for any function τ . If θ̂ is the
MLE of θ, then for any function τ(θ), the MLE of τ(θ) is τ(θ̂).2

For example, if p̂ is the MLE of the Binomial distribution with unknown parameter
p, then np̂(1− p̂) is the MLE of the the variance.

This invariance property is nice, but there is a somewhat undesirable consequence:
MLEs are generally NOT unbiased. Both of the exercises above demonstrate this.
For a simpler example, consider X ∼ N (θ, 1). The MLE of θ is θ̂ = X̄ and, therefore
the MLE of θ2 is X̄2.

However we know from Jensen’s inequality that E[X̄2] ≥ E[X̄]2 = θ2, therefore X̄2 is
a biased estimator of θ2. Despite being generally biased, MLE enjoys desirable large
sample properties, such as being consistent and efficient, as we will see later.

2For a general function τ , if we are interested in estimating the parameter η = τ(θ) from the
likelihood function L(θ|x), then we transform the likelihood as follows: L(η|x) = maxθ:τ(θ)=η L(θ|x)

7



MECO 7312 Lecture 8: Maximum Likelihood Estimation

1.11. Numerical implementation of MLE

In practice, MLE typically lacks a closed-form solution and requires numerical op-
timization. This process involves several challenges:

(i) Non-linearity of the Likelihood Function: Likelihood functions are
often highly non-linear, which complicates finding the global maximum. Nu-
merical solvers (such as fmincon and fminsearch in MATLAB, or Python’s
scipy.optimize.minimize) are designed to locate local optima, meaning they
may converge only to a local maximum rather than the global one.

(ii) Multiple Parameters and Local Maxima: With a high-dimensional
parameter space, the likelihood surface may have multiple local maxima. To
improve the chances of finding the global maximum, we should start the
optimization from several different initial values.

(iii) Implementation of the Likelihood Function and its Derivatives: In
many cases, the likelihood function, as well as its gradient and Hessian, must
be explicitly coded. The MLE is then obtained using iterative methods, such
as gradient ascent or stochastic gradient descent.

(iv) Accurate Gradient Calculation: Finite-difference methods can approx-
imate gradients but often lack precision. Instead, exact gradients can be
obtained through Automatic Differentiation, a technique commonly used in
backpropagation within tools like PyTorch and TensorFlow, providing more
accurate and efficient gradient computations.

GMM shares a lot of these difficulties.

2. Methods of evaluating estimators

In this section, we will introduce a general framework for evaluating how good an
estimator is.

If θ is the ground truth of the parameters, and your proposed estimate is a, you
incur a loss of L(a, θ). The function L is called the Loss Function and it is the utility
function that is specific to an individual researcher. The notion of loss functions is
central to statistical decision theory.

Common function of L includes the squared error loss function, L(a, θ) = (a − θ)2

and the absolute error loss function L(a, θ) = |a− θ|. These loss functions penalize
under- and over-estimate symmetrically and equally. A loss function that penalizes
overestimation more than underestimation is:
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L(θ, a) =

{
(a− θ)2 if a < θ

4(a− θ)2 if a ≥ θ

Since the estimator a is a random variable that depends on the random sample
X = (X1, . . . , Xn), we are interested in the expected loss that will be incurred if
the estimator a(X) is used:

EX [L(a(X), θ)]

2.1. Mean Squared Error

The mean squared error (MSE) is the expected loss of an estimator a(X) under the
square loss function. That is,

E[(a(X)− θ)2]

An important property of the MSE is:

E[(a(X)− θ)2] = E[(a(X)2]− 2E[a(X)]θ + θ2

= E[(a(X)2]− E[a(X)]2 + E[a(X)]2 − 2E[a(X)]θ + θ2

= Var(a(X)) + (E[a(X)]− θ)2

= Var(a(X)) + bias2

Therefore the MSE measures both the variability of an estimator (precision), as well
as its bias (accuracy). A good estimator according to the mean squared error (in
the sense of having a low MSE) is both precise and accurate.

2.2. Example

Let X1, . . . , Xn ∼ i.i.d N (µ, σ2).

The sample mean and sample variance estimators X̄ = 1
n

∑n
i=1 Xi and S2 = 1

n−1

∑n
i=1(Xi−

X̄)2 are both unbiased estimators of µ and σ2. Because the bias is zero for both
estimators, the mean squared errors are given by:

MSE(X̄) = E[(X̄ − µ)2] = Var(X̄) =
σ2

n

MSE(S2) = E[(S2 − σ2)2] = Var(S2) =
2σ4

n− 1
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Note that the MSE will usually be a function of the true underlying parameters of
the DGP. As a result, the MSE can be larger or smaller depending on the values of
these parameters.

When one estimator has a smaller MSE than another, it is a better estimator (ac-
cording to the mean square error criterion).

Unbiased estimators may not be optimal in terms of MSE. There is usually a trade-
off between bias and variance so that a small increase in bias can be traded for
a larger decrease in variance, resulting in a better MSE. This is the case for the
sample variance versus the Maximum-Likelihood estimator of σ2 which is σ̂2 =
1
n

∑n
i=1(Xi − X̄)2 = n−1

n
S2. Although σ̂2 is biased, it has a much lower variance,

such that the overall MSE is smaller.

E[σ̂2] =
n− 1

n
σ2

.

Var(σ̂2) =

(
n− 1

n

)2
2σ4

n− 1
=

2(n− 1)σ4

n2

.

MSE(σ̂2) is therefore given by:

E[(σ̂2 − σ2)2] =
2(n− 1)σ4

n2
+

(
n− 1

n
σ2 − σ2

)2

=
2n− 1

n2
σ4

.

Now, E[(S2 − σ2)2] = 2
n−1

σ4 = 2n
n(n−1)

σ4 > 2n−1
n(n−1)

σ4 > 2n−1
n2 σ4 = E[(σ̂2 − σ2)2].

This shows that MSE(S2) > MSE(σ̂2). The MLE of σ2 has a lower MSE than the
sample variance.

However the MSE here is calculated assuming the DGP is N (µ, σ2). We can use
Monte Carlo simulation to calculate the MSE for different DGPs, as demonstrated
in the accompanying Python Notebook.

Regardless of the data generating process, for large n, we have S2 ≈ N (σ2, 1
n
(µ4 −

σ4)), as well as σ̂2 ≈ N (σ2, 1
n
(µ4−σ4)), where µ4 = E[(X−µ)4]. As such, S2 and σ̂2

are asymptotically equivalent, and they have approximately the same mean-squared
error for large n.
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