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1. Continuous Mapping Theorem

Suppose that the sequence of random variable Xn converges in probability to θ as
n → ∞. Then continuous functions of Xn also converge to functions of θ. That
is,

Xn
p−→ θ. If g is a continuous function, then g(Xn)

p−→ g(θ).

Xn
a.s−→ θ. If g is a continuous function, then g(Xn)

a.s−→ g(θ).

Suppose that the sequence of random variable Xn converges in distribution to X as
n → ∞. Then continuous functions of Xn also converge to functions of X. That
is,

Xn
d−→ X. If g is a continuous function, then g(Xn)

d−→ g(X).

1.1. Example: sample standard deviation

Previously we saw that the sample variance S2 = 1
n−1

∑n
i=1(Xi − X̄)2 converges in

probability to σ2 ≡ Var(Xi). Let s =
√

1
n−1

∑n
i=1(Xi − X̄)2 be the sample standard

deviation. It follows from the continuous mapping theorem that s converges in

probability to σ because
√
S2 p−→

√
σ2.

Although the sample standard deviation S is a consistent estimator of σ, it is a
biased estimator of σ.

From Jensen’s inequality, if g is a convex function, then

E[g(X)] ≥ g(E[X])

E[−g(X)] ≤ −g(E[X])

If g is a convex function, then −g is a concave function. For a strictly concave
function g, we have E[g(X)] < g(E[X]). Since f(x) =

√
x is a concave function, and

E[S2] = σ2, it follows that
1
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E[
√
S2] <

√
E[S2]

E[
√
S2] <

√
σ2

E[S] < σ

Therefore, the sample standard deviation is a biased estimator of the true standard
deviation (it underestimates).

2. Central Limit Theorem

Let X1, X2, . . . be a sequence of i.i.d random variables with E[Xi] = µ and 0 <
Var(Xi) = σ2 < ∞. Define X̄n = 1

n

∑n
i=1Xi. The Law of Large Numbers tells us

that X̄ converges in probability to µ.1 That is, X̄ − µ→p 0

However now consider
√
n(X̄−µ). As n→∞, we have two conflicting convergence:

(i) X̄ − µ→ 0 in probability, (ii) but
√
n→∞. Somehow, they balance each other

out in the sense that
√
n(X̄ − µ) converges to a random variable as n → ∞. This

random variable is N (0, σ2), regardless of what the underlying distribution of X
is.

Central Limit Theorem (Lindeberg-Levy):
√
n(X̄n − µ)/σ converges in distribution

to N (0, 1) as n → ∞. That is, limn→∞ P (
√
n(X̄n − µ)/σ ≤ x) =

∫ x
−∞

1√
2π
e−y

2/2 dy

for all x ∈ R. Equivalently,
√
n(X̄n − µ) converges in distribution to N (0, σ2) as

n→∞.
√
n is also called the “rate of convergence” of the sequence X̄−µ. In another words,

(X̄ − µ)/σ decays at the same rate to zero as 1√
n

asymptotically. A weaker form

of CLT is proven in Casella-Berger, the proof relies on moment generating function
and Taylor’s expansion.

2.1. Asymptotic approximation

When the underlying data-generating process is Normal, we know that the sample
mean X̄n is distributed according to N (µ, σ

2

n
).

What if the data-generating process is not Normally distributed. For example,
if Xi is Uniformly distributed, what is the distribution of the sample mean X̄n?
In practice, we do not know the data-generating process, which is why CLT is
important.

1Which also implies that X̄ converges in distribution to the (degenerate) distribution µ (a
constant).
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We can use Asymptotic Approximation to approximately derive the distribution of
X̄n. Starting with the result of the CLT:

√
n(X̄n − µ)

d−→ N (0, σ2)

X̄ ≈ N
(
µ,
σ2

n

)
Rearranging, X̄ is approximately distributed as N (µ, σ

2

n
), when n is very large. The

goal of asymptotic approximations is to appeal to asymptotically large n in order
to infer the distribution of a statistic.

Even when n is finite and not large, we can usually take N (µ, σ
2

n
) to approximate

the distribution of X̄. We can use simulations to see that this approximation holds
remarkably well in many cases.

2.2. Simulating the Central Limit Theorem

Take Xi to be exponentially distributed, i.e. the pdf of Xi is f(x) = λe−λx.

According to the CLT,
√
n(X̄ − 1

λ
) →d N (0, 1

λ2
), where E[X] = 1

λ
and Var(X) =

1
λ2

. Therefore the asymptotic approximation for the distribution of X̄ is X̄ ∼
N ( 1

λ
, 1
nλ2

).

We can see from the monte carlo simulation that even when the sample size is not
too large (n = 100), the asymptotic approximation from the CLT is remarkably
accurate. Now if we repeat the above with a smaller sample size, n = 10, then
we see that the CLT breaks down. We can repeat the above simulation with other
data-generating process.

3. Slutsky’s theorem

If Xn
d−→ X in distribution, and Yn

p−→ a where a is a constant, then

YnXn
d−→ aX in distribution(1)

Xn + Yn
d−→ X + a in distribution(2)

The Slutsky’s theorem can be used to show that the biased sample variance S̃2 =
1
n

∑n
i=1(Xi − X̄)2 is nevertheless a consistent estimator of σ2 ≡ Var(Xi).
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S2 p−→ σ2

n− 1

n
S2 p−→ σ2 , as n→∞

From CLT, we know that
√
n(X̄n − µ)/σ

d−→ N (0, 1). What is the limiting distribu-
tion if we replace σ by the sample standard deviation Sn. We have seen previously

that S2
n

p−→ σ2, therefore Sn
p−→ σ by the Continuous Mapping Theorem. By applying

Slutsky’s Theorem to
√
n(X̄n − µ)

d−→ N (0, σ2) and Sn
p−→ σ,

√
n(X̄n − µ)

Sn

d−→ N (0, 1)

Hence, for large n, the distribution of X̄ is approximately N (µ, S
2

n
).2

Using Slutsky’s theorem, we can also show that:

n1/3(X̄n − µ)/σ = n−1/6n1/2(X̄n − µ)/σ → 0

Similarly,

n3/4(X̄n − µ)/σ = n1/4n1/2(X̄n − µ)/σ →∞

4. Delta method

We have derived the asymptotic distribution of the sample mean, that is, X̄ ≈
N (µ, σ

2

n
). What about the sample variance? Often we are interested in some func-

tions of the sample mean. For example, X̄2, eX̄ , log X̄.

Let X1, . . . , Xn be iid from a distribution. Suppose we are interested in g(X̄). The
Taylor’s series of g at a is:

g(x) = g(a) + g′(a)(x− a) +R(x, a)(3)

R(x, a) is the remainder term. The remainder term will be small compared to g(a)+
g′(a)(x− a) when x is close to a, and can be ignored. That is, limx→aR(x, a)/(x−
a) = 0. As a shorthand, we usually write g(x) = g(a) + g′(a)(x − a) + o(x − a),
where o(x− a) is a term that is dominated by x− a in the limit.

2However we still do not know what µ is, so how can this result be useful? Well, in the
framework of Hypothesis Testing which we will talk about later, if we conjecture that µ = µ0, then
we would know the entire sampling distribution of X̄, and see whether our realized sample mean
is consistent with that sampling distribution.
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If we substitute x with X̄ and a with µ ≡ E[Xi],

g(X̄) = g(µ) + g′(µ)(X̄ − µ) + o(X̄ − µ)(4)

In the limit as n→∞, we can show that
√
n · o(X̄ − µ)→ 0. Therefore for large n,

we have:

√
n(g(X̄)− g(µ)) ≈ g′(µ)

√
n(X̄ − µ)(5)

Since
√
n(X−µ)

d−→ N (0, σ2), by Slutsky’s theorem, g′(µ)
√
n(X̄−µ)

d−→ N (0, g′(µ)2σ2).

It follows that
√
n(g(X̄) − g(µ))

d−→ N (0, g′(µ)2σ2). Therefore, the asymptotic ap-
proximation of g(X̄) is:

g(X̄) ≈ N
(
g(µ),

g′(µ)2σ2

n

)
(6)

Delta Method. Let Yn be a sequence of random variances that satisfies
√
n(Yn −

θ) → N (0, σ2) in distribution. For a given function g such that g′(θ) exists and is
not 0. Then,

√
n(g(Yn)− g(θ))

d−→ N (0, σ2g′(θ)2)(7)

4.1. Example

For example, suppose X1, . . . , Xn are iid Bernoulli(p). Then E[Xi] = p ≡ µ. There-
fore the sample mean X̄ is a consistent and unbiased estimator of p. The variance
is Var(Xi) = p(1− p).

Consider the random variable X̄(1−X̄). This is of interest because it is a (consistent)
estimator for the variance of the Bernoulli distribution. We know this by applying
the continuous mapping theorem. In fact, the sample variance can be expressed
as S2 = n

n−1
X̄(1 − X̄) for the Bernoulli distribution. Let g(x) = x(1 − x), then

g′(x) = 1− 2x.

First note that E[Xi] = p and Var(Xi) = p(1− p), by CLT:

√
n(X̄ − p) d−→ N (0, p(1− p)) as n→∞(8)

By the Delta method, we can derive the sampling distribution of X̄(1 − X̄) as
n→∞.
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Figure 1. p(1− p)(1− 2p)2 as a function of p

√
n(g(X̄)− g(p))

d−→ N (0, p(1− p)g′(p)2)(9)
√
n
(
X̄(1− X̄)− p(1− p)

) d−→ N
(
0, p(1− p)(1− 2p)2

)
(10)

Therefore the asymptotic distribution of X̄(1−X̄) is X̄(1−X̄) ≈ N
(
p(1− p), p(1−p)(1−2p)2

n

)
.

The asymptotic variance of X̄(1 − X̄) is p(1−p)(1−2p)2

n
. The asymptotic variance of

X̄(1−X̄) is highest around p = 0.25 and p = 0.75, see Figure 1. Although X̄(1−X̄) is
a consistent estimator for the variance of the Bernoulli random variable, the precision
of this estimator varies. It is least precise around p = 0.25 and p = 0.75.

4.2. Another example

Suppose now we are interested in p
1−p . This quantity is called the odds ratio. By

the Continuous Mapping Theorem, a natural (consistent) estimator for p
1−p would

be X̄
1−X̄ .

Use Delta Method to obtain the asymptotic distribution of X̄
1−X̄ . From CLT:

√
n(X̄ − p) d−→ N (0, p(1− p)) as n→∞

Now let g(x) = x
1−x = 1

1−x − 1. Compute g′(x) = − 1
(1−x)2

.

√
n(g(X̄)− g(p))

d−→ N (0, p(1− p)g′(p)2)(11)

√
n

(
X̄

1− X̄
− p

1− p

)
d−→ N

(
0,

p

(1− p)3

)
(12)
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Therefore, the asymptotic distribution of X̄
1−X̄ is X̄

1−X̄ ≈ N
(

p
1−p ,

p
n(1−p)3

)
.

4.3. Second-order Delta method

What is the asymptotic distribution of X̄2, without assuming Normality?

√
n(X̄ − µ)→d N (0, σ2) from CLT

√
n(X̄2 − µ2)→d N (0, (2µ)2σ2) from Delta Method

Hence, X̄2 ≈ N (µ2, 4µ2σ2

n
). However, what if µ = 0? The asymptotic variance

can’t be zero! Delta method fails here because g′(µ) = 0. We would need to use
second-order Delta Method.

Delta method requires that g′(µ) 6= 0, which fails in some cases. Consider the
second-order Taylor expansion of the function g(x) about µ:

g(X̄) = g(µ) + g′(µ)(X̄ − µ) +
g′′(µ)(X̄ − µ)2

2
+R(X̄, µ)(13)

Where the remainder term R(X̄, µ) → 0 as X̄ → µ, and does so at a rate faster
than (X̄ − µ)2. When g′(µ) = 0, we have:

g(X̄)− g(µ) ≈ g′′(µ)(X̄ − µ)2

2
(14)

when n is large. Since
√
n(X̄ − µ)/σ

d−→ N (0, 1), we have n(X̄ − µ)2/σ2 d−→ χ2
1 by

the Continuous Mapping Theorem. Hence,

n(g(X̄)− g(µ))
d−→ g′′(µ)σ2

2
χ2

1(15)

Example:

Going back to our example that finding the asymptotic distribution of X̄2 when
µ = 0,

√
n(X̄ − 0)→d N (0, σ2) from CLT

nX̄2 →d σ
2χ2

1 from second-order Delta Method
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Now χ2
1 is equivalent to the Gamma distribution with shape parameter 1

2
, and a

scale parameter of 2. That is, χ2
1 = Gamma(1

2
, 2). Moreover, c × Gamma(1

2
, 2) =

Gamma(1
2
, 2c) for a constant c. Therefore,

X̄2 ≈ σ2

n
χ2

1 asymptotic approximation

X̄2 ≈ Gamma

(
1

2
,
2σ2

n

)
When µ 6= 0, the asymptotic distribution is X̄2 ≈ N (µ2, 4µ2σ2

n
), and X̄2 converges

to µ2 at a rate of
√
n. However, if µ = 0, then X̄2 ≈ σ2

n
χ2

1, and X̄2 converges much
faster to µ2, at a rate of n. For example, if we consider

√
nX̄2 when µ = 0, then√

nX̄2 would converge to zero in probability.

4.4. Multivariate Delta method

Given a sequence of random vectors θn, if we have:
√
n(θn − θ)

d−→ N (0,Σ)

where
d−→ denotes convergence in distribution, N (0,Σ) is a multivariate normal

distribution with mean vector 0 and variance-covariance matrix Σ, and θ is a
p-vector of parameters, the multivariate Delta Method states that for a function
g : Rp → Rq that is continuously differentiable at θ, the following asymptotic dis-
tribution holds: √

n(g(θn)− g(θ))
d−→ N (0,JgΣJ

T
g )

where Jg is the Jacobian matrix of g evaluated at θ, which is a q × p matrix where
the element in the ith row and jth column is

[Jg]ij =
∂gi(θ)

∂θj

Jg =


∂g1(θ)
∂θ1

∂g1(θ)
∂θ2

· · · ∂g1(θ)
∂θp

∂g2(θ)
∂θ1

∂g2(θ)
∂θ2

· · · ∂g2(θ)
∂θp

...
...

. . .
...

∂gq(θ)

∂θ1

∂gq(θ)

∂θ2
· · · ∂gq(θ)

∂θp


Note that when p = q = 1, this reduces to the univariate Delta Method.
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4.5. Application of Multivariate Delta Method

Delta method underlies computation of standard errors in many statistical pack-
ages. See: https://cran.r-project.org/web/packages/modmarg/vignettes/

delta-method.html

To see an example where we apply the multivariate Delta Method, let the data-
generating process for Y1, . . . , Yn be P (Yi = 1|Xi = xi) = Φ(β0 + β1xi). This is
the Probit model for a binary outcome Yi, where the probability of Yi = 1 given
a covariate Xi = xi is modeled as P (Yi = 1|Xi = xi) = Φ(β0 + β1xi), where Φ(·)
is the cdf of the standard normal distribution, and β = (β0, β1)T are the model
parameters.

Later on, we will see that the maximum-likelihood estimator (β̂0, β̂1) has an as-
ymptotic multivariate Normal distribution (in general, the sampling distribution of
coefficients from regressions is also asymptotically multivariate Normal). In many
cases, we are interested in functions of the coefficients. For example, in a Probit
regression, the coefficient β itself has no meaningful interpretation. Of interest is
the marginal effect: dP (Yi = 1|Xi = xi)/dxi = β̂1φ(β̂0 + β̂1xi). (Multivariate) Delta

method allows us to compute the standard error of β̂1φ(β̂0 + β̂1xi) via asymptotic
approximation, which is faster and more accurate than bootstrapping.

Another quantity of interest is the predicted probability. Specifically, let β̂n =
(β̂0, β̂1)T be the maximum likelihood estimators (MLEs) of the parameters. Under
standard regularity conditions, the MLEs are asymptotically normally distributed:

√
n(β̂n − β)

d−→ N (0,Σ),

where Σ is the asymptotic variance-covariance matrix of the estimators.

The predicted probability for a given value xi is:

g(β) = Φ(β0 + β1xi).

We are interested in the asymptotic distribution of the predicted probability ĝn =
g(β̂n).

The Jacobian of g(β) with respect to β = (β0, β1) is:

Jg =
[
∂g
∂β0

∂g
∂β1

]
.

∂g

∂β0

= φ(β0 + β1xi),

9
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and
∂g

∂β1

= xiφ(β0 + β1xi),

where φ(·) is the pdf of the standard normal distribution.

Thus, the Jacobian matrix is:

Jg =
[
φ(β0 + β1xi) xiφ(β0 + β1xi)

]
.

By the multivariate Delta Method, the asymptotic distribution of the predicted
probability is:

√
n(ĝn − g(β))

d−→ N (0,JgΣJ
T
g ).

Even though β0, β1 is not known in the formula for the asymptotic variance, we can
plug in any consistent estimator of β0, β1, which is justified from Slutsky’s and the
Continuous Mapping Theorem. Note that both Slutsky’s and the Continuous Map-
ping Theorem are similarly defined for random vectors or matrices. For instance,
JgΣJ

T
g is a (scalar) continuous function of β = (β0, β1). Thus if β̂ converges in

probability to β, then ĴgΣĴ
T
g also converges in probability to JgΣJ

T
g
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