
LECTURE 10: HYPOTHESIS TESTING

MECO 7312.
INSTRUCTOR: DR. KHAI CHIONG

OCTOBER 30, 2024

Hypothesis: statement about an unknown population parameter

Examples: 1.) The average household income in the city of Dallas (statement about
the population mean).
2.) A company’s promotional policy has zero effect on sales (statement about the
population regression coefficient).
3.) Portfolio A is less volatile than Portfolio B (statement about variances of stocks
and portfolios).

In hypothesis testing, we are interested in testing between two mutually exclusive
hypotheses, called the null hypothesis (denoted H0) and the alternative hy-
pothesis (denoted H1).

H0 and H1 are complementary hypotheses, in the following sense:

If the parameter space is S, then the null and alternative hypotheses form a partition
of S. That is,

H0: θ ∈ S0 ⊂ S
H1: θ ∈ Sc0 (the complement of S0 in S).

Examples:

(i) H0 : θ = 0 vs. H1 : θ 6= 0, where the parameter space is R.

(ii) H0 : θ ≤ 0 vs. H1 : θ > 0, where the parameter space is R.

(iii) H0 : θ = 0 vs. H1 : θ = 1, where the parameter space is {0, 1}.

(iv) H0 : θ ∈ [−1, 1] vs. H1 : θ /∈ [−1, 1], where the parameter space is R.

1. Test statistics

There are two main ingredients in a hypothesis test. One is a test statistic, the
other is a decision rule.
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A test statistic, similar to an estimator, is just some real-valued function Tn ≡
T (X1, . . . , Xn) of your data sample X1, . . . , Xn. Clearly, a test statistic is a random
variable.

A decision rule is a function mapping values of the test statistic into {0, 1},
where

• “0” implies that you accept the null hypothesis H0 ⇔ reject the alternative
hypothesis H1.

• “1” implies that you reject the null hypothesis H0 ⇔ accept the alternative
hypothesis H1.

Example:

Let µ denote the (unknown) population mean annual household income in the city
of Dallas.

You want to test: H0 : µ = $100,000 vs. H1 : µ 6= $100,000.

Let your test statistic be X̄n = 1
n

∑n
i=1Xi, the average income of n randomly-drawn

households.

There are many different possible decision rules. Consider the following decision
rules:

(i) 1(X̄n 6= 100,000)

(ii) 1(X̄n 6∈ [50,000, 150,000])

(iii) 1(X̄n 6∈ [90,000, 110,000])

Also, there are many possible test statistics, such as: (i) medn (sample median); (ii)
max(X1, . . . , Xn) (sample maximum).

Which ones make the most sense?

Next we consider some common types of hypothesis tests.

2. Likelihood Ratio Test

Let: X1, . . . , Xn ∼ i.i.d f(x|θ), and likelihood function L(θ|x) =
∏n

i=1 f(xi|θ).

Define: the likelihood ratio test statistic for testing H0 : θ ∈ S0 vs. H1 : θ ∈ Sc0
as

λ(x) ≡ maxθ∈S0 L(θ|x)

maxθ∈S L(θ|x)
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Where the parameter space is S and Sc0 ≡ S \ S0. x = (x1, . . . , xn) is the realized
sample. The numerator of λ(x) is the “restricted” likelihood function, and the
denominator is the unrestricted likelihood function.

The support of the LR test statistic is [0, 1].

Intuitively speaking, if H0 is true (i.e., θ ∈ S0), then λ(x) will be close to 1 (since
the restriction of θ ∈ S0 will not bind). However, if H0 is false, then λ(x) can be
small (close to zero).

So an LR test should be one which rejects H0 when λ(x) is small enough.

A Likelihood Ratio Test (LRT) is a test where we reject the null hypothesis
if λ(x) ≤ c, where c is any number satisfying 0 ≤ c ≤ 1. In another words, a
Likelihood Ratio Test consists of the test statistic λ(x), as well as the decision rule
that we reject the null hypothesis whenever λ(x) ≤ c.

2.1. Example: Normal LRT

X1, . . . , Xn ∼i.i.d N (θ, 1)

Test H0 : θ = 2 vs. H1 : θ 6= 2.

Here, S0 = {2} and S = R.

λ(x) =
maxθ∈S0 L(θ|x)

maxθ∈S L(θ|x)

=
L(2|x)

L(θ̂MLE|x)

Maximizing the unrestricted likelihood is exactly the Maximum Likelihood Estima-
tor (MLE). Therefore θ̂MLE = x̄n = 1

n

∑n
i=1 xi is the MLE for θ.

λ(x) =
L(2|x)

L(θ̂MLE|x)

=
(2π)−n/2 exp

(
−1

2

∑
i(xi − 2)2

)
(2π)−n/2 exp

(
−1

2

∑
i(xi − x̄n)2

)
= exp

(
−1

2

n∑
i=1

(xi − 2)2 +
1

2

n∑
i=1

(xi − x̄n)2

)
= exp

(
−n

2
(x̄n − 2)2

)
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More generally, test H0 : θ = θ0 vs. H1 : θ 6= θ0. The likelihood ratio test statistic
is:

λ(x) = exp
(
−n

2
(x̄n − θ0)2

)
For this to be a test, we need to specify the decision rule: 1(λ(x) ≤ c), which we
will do so later.

2.2. Example: Uniform LRT

X1, . . . , Xn ∼i.i.d U [0, θ].

2.2.1. Null hypothesis is a point, S0 is a singleton

Test H0 : θ = 2 vs. H1 : θ 6= 2.

Here, S0 = {2} and S = (0,∞).

The likelihood function L(θ|x) is:

L(θ|x) =

{ (
1
θ

)n
if max(x1, . . . , xn) ≤ θ

0 if max(x1, . . . , xn) > θ

The denominator of the LRT statistic is the unrestricted likelihood, maxθ∈S L(θ|x),

which is maximized at θ̂MLE = max(x1, . . . , xn). Hence the denominator of the LR

statistic is L(θ̂MLE|x) =
(

1
max(x1,...,xn)

)n
.

The numerator of the LRT statistic is the restricted likelihood, maxθ∈S0 L(θ|x):

L(2|x) =

{ (
1
2

)n
if max(x1, . . . , xn) ≤ 2

0 if max(x1, . . . , xn) > 2.

Putting them together,

λ(x) =

{
0 if max(x1, . . . , xn) > 2(

max(x1,...,xn)
2

)n
otherwise

To complete the LR test: we have to specify the decision rule, which is to reject
the null if λ(x) is small enough, say 1(λ(x) ≤ c). We see that the critical region
depends on the data only through max(x1, . . . , xn).
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Plot the graph depicting the rejection region (it will consist of two disconnected
parts). We will reject the null if either max(x1, . . . , xn) > 2, or max(x1, . . . , xn) ≤
2c1/n.

2.2.2. Null hypothesis is an interval, S0 is an interval

Test H0 : θ ∈ (0, 2] vs. H1 : θ > 2.

Here, S0 = (0, 2] and S = (0,∞).

The unrestricted likelihood is the same as before. But the restricted likelihood
is

max
θ∈(0,2]

L(θ|x) =

{ (
1

max(x1,...,xn)

)n
if max(x1, . . . , xn) ≤ 2

0 otherwise.
so

λ(x) =

{
1 if max(x1, . . . , xn) ≤ 2
0 otherwise.

(1)

The LR test is 1(λ(x) ≤ c). Therefore for 0 < c < 1, we reject the null if
max(x1, . . . , xn) > 2. If c = 1, then we will always reject the null, regardless of
what data we observe. If c = 0, then we will never reject the null. Later, we will
talk about how to set c, but in this example, the only sensible choice is c ∈ (0, 1),
but all c ∈ (0, 1) leads to the same decision rule.

Therefore the test of H0 : θ ∈ [0, θ0] vs. H1 : θ > θ0 has a very simple form, which
is to reject the null hypothesis whenever max(x1, . . . , xn) > θ0.

2.3. Exponential LRT

Let X1, . . . , Xn be a random sample from an exponential population with pdf:
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f(x|θ) =

{
e−(x−θ) x ≥ θ

0 x < θ

where −∞ < θ <∞

The likelihood function is:

L(θ|x) =

{
enθ−

∑
xi min(x1, . . . , xn) ≥ θ

0 otherwise

Consider testing H0 : θ ≤ θ0 versus H1 : θ > θ0.

The unrestricted maximum of L(θ|x) is achieved at θ = min(x1, . . . , xn). Therefore
maxθ∈(−∞,∞) L(θ|x) = enmin(x1,...,xn)−

∑
xi

Maximizing L(θ|x) with respect to the parameter space θ ∈ (−∞, θ0],

max
θ∈(−∞,θ0]

L(θ|x) =

{
enθ0−

∑
xi min(x1, . . . , xn) ≥ θ0

enmin(x1,...,xn)−
∑
xi min(x1, . . . , xn) < θ0

Therefore,

λ(x) =

{
en(θ0−min(x1,...,xn)) min(x1, . . . , xn) > θ0

1 min(x1, . . . , xn) ≤ θ0

Try plotting the LR test statistic λ(x) as a function of min(x1, . . . , xn). We reject
the null hypothesis when en(θ0−min(x1,...,xn)) ≤ c, that is, when min(x1, . . . , xn) ≥
θ0 − log c/n, i.e. when min(x1, . . . , xn) is sufficiently larger than θ0. Note that log c
is a negative number because 0 ≤ c ≤ 1.

3. Wald Tests (t-test)

Another common way to generate test statistics is to focus on statistics which are
either normally distributed or asymptotically normal distributed, under H0. For ex-
ample, regression coefficients, Maximum Likelihood estimators, sample mean, sam-
ple variances, etc.

Suppose that the population parameter of interest is θ, and that we have an esti-
mator θ̂n for θ that is consistent and asymptotically Normal, with some asymptotic
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variance V . That is,
√
n(θ̂n−θ)

d→ N (0, V ) as n→∞. We want to test H0 : θ = θ0.
Then, if the null were true:

t(x) ≡
√
n(θ̂n − θ0)√

V

d→ N (0, 1).(2)

The quantity
√
n(θ̂n−θ0)√

V
is called the t-test statistic, which is approximately Normal

when n is large.

To fix idea, take θ ≡ E[X] to be the (unknown) population mean, and the estimator

for θ is the sample mean θ̂n = 1
n

∑
i=1 Xi. Then, the Central-Limit Theorem implies

that
√
n(X̄−θ0)

d→ N (0, σ2), and the t-test statistic becomes
√
n(X̄−θ0)
σ

or X̄−θ0
σ/
√
n

.

Know that the t-test statistic here can be applied more generally to any asymptot-

ically Normal estimator θ̂n of θ such that
√
n(θ̂n − θ)

d→ N (0, V ) as n→∞.

In most cases, the asymptotic variance V will not be known, and will also need to

be estimated. However, if we have an estimator V̂n such that V̂n
p→ V , then the

statement
√
n(θ̂n − θ0)√

V̂

d→ N (0, 1)

still holds (using the continuous mapping theorem and the Slutsky theorem). For

hypothesis tests involving the population mean, the t-test statistic becomes X̄−θ0√
S2/n

,

where S2 is the sample variance.

To see how the t statistic can be used for hypothesis testing, we consider two
cases:

(i) Two-sided (two-tailed) test: H0 : θ = θ0 vs. H1 : θ 6= θ0.

Under H0: the t-test statistic is approximately (asymptotically) N (0, 1)
Under H1: assume that the true value is some θ1 6= θ0. Then the t-statistic can be
written as:

t =

√
n(θ̂n − θ0)

σ
=

√
n(θ̂n − θ1)

σ
+

√
n(θ1 − θ0)

σ
.

The first term
d→ N (0, 1), but the second (non-stochastic) term diverges to ∞ or

−∞, depending on whether the true θ1 exceeds or is less than θ0. Hence the t-
statistic diverges to −∞ or ∞ with probability 1.
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Hence, in this case, your test should be 1(|t| > c), where c should be some number
in the tails of the N (0, 1) distribution. Later, we will discuss how to choose c.

(ii) One-sided test: H0 : θ ≤ θ0 vs. H1 : θ > θ0.

Here the null hypothesis is θ ∈ (−∞, θ0]

Just as for the two-sided test, let’s consider the test statistic t ≡
√
n(θ̂n−θ0)

σ
.

Suppose H0 is true and θ < θ0, then t diverges to −∞ with probability 1 as n →
∞.

Suppose H0 is true and θ = θ0, then t is approximately N (0, 1).

Suppose H1 is true, t diverges to ∞ with probability 1 as n→∞.

Hence, we should reject the null when the test statistic is reasonably large. That is,
your test should be 1(t > c), for some c.

In some problems, either LR or Wald tests can be used. LRT requires both the
restricted and unrestricted models to be estimated, which is more complicated than
the Wald test, especially for a null hypothesis like H0 : θ ≤ θ0. It also requires that
we correctly specify the likelihood function. Wald test seems simpler but requires
the estimator to be asymptotically Normal, and having a consistent estimate of the
asymptotic variance.

3.1. Multivariate t-test

The Wald test can be used to test a hypothesis on multiple parameters. Let ~θ be a
k-dimensional estimator that is asymptotically Multivariate Normal:

√
n(~θn − ~θ)

d→ N (0,Σ).

The MLE with multiple parameters satisfies this. Under H0 : ~θ = ~θ0, then we
have √

n(~θn − ~θ0)
d→ N (0,Σ)

The multivariate version of the t-test statistic is the following quadratic form:

tn ≡ n · (~θn − ~θ0)TΣ−1(~θn − ~θ0)
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This t-test statistics is motivated by the following result. If y is a k × 1 random
variable with y ∼ N (µ,Σ), then

(y − µ)TΣ−1(y − µ) ∼ χ2
k

Intuitively, sum of squares of k standardized Normally distributed variables have a

χ2
k distribution. As such, under the null hypothesis, tn

d→ χ2
k. Since χ2 takes only

positive values, the rejection region of the test would take the form: 1(tn > c).

3.2. Wald test for MLE

Suppose that θ̂MLE is a MLE of θ given the data x1, . . . , xn generated i.i.d from
f(x1, . . . , xn|θ).

√
n(θ̂MLE − θ)

d−→ N (0, nI(θ)−1) as n→∞

Where I(θ) = nE
[(

∂ log f(X|θ)
∂θ

)2
]

is the Fisher’s information number. A consistent

estimator of nI(θ)−1 = E
[(

∂ log f(X|θ)
∂θ

)2
]−1

is σ̂2 =

(
1
n

∑n
i=1

(
∂ log f(xi|θ)

∂θ

∣∣
θ=θ̂MLE

)2
)−1

.

The t-test statistic becomes
√
n(θ̂MLE − θ0)/σ̂ for testing the null hypothesis that

H0 : θ = θ0.
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