
LECTURE 3: MULTIVARIATE RANDOM VARIABLES

MECO 7312.
INSTRUCTOR: DR. KHAI CHIONG

SEPTEMBER 4, 2024

Previously, we looked at univariate random variables, that is, the variable of interest
is a scalar. Most of the time however, we are interested in the behavior of a vector.
For instance, the behavior of (i) quantities and prices, (ii) employment and GDP,
(iii) customer shopping frequency and spending, (iv) temperature and rainfall, (v)
prices of multiple assets etc.

An n-dimensional random vector is a function from a sample space Ω into Rn, the
n-dimensional Euclidean space.

1. Pdf and pmf of bivariate random variables

1.1. Discrete case

Consider the experiment of tossing two fair dice. The sample space of this experi-
ment is the set of all the possible outcomes. Ω = {(1, 1), (1, 2), . . . , (2, 1), . . . }, where
|Ω| = 36.

Define X = sum of the two dice, Y = |difference of the two dice|. In this way, we
have defined the bivariate random vector (X, Y ).

1.) What is P (X = 6, Y = 0)? The event X = 6 and Y = 0 occurs if and only if
the two dice are 3. Hence, P (X = 6, Y = 0) = 1

36
.

2.) How about P (X = 8, Y = 2)?

P (X = 8, Y = 2) =
1

18

3.) How about P (X = 7, Y ≤ 4)?

P (X = 7, Y ≤ 4) =
4∑
y=0

P (X = 7, Y = y) =
4

36
=

1

9
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First die, second die 1 2 3 4 5 6
1 (2, 0) (3, 1) (4, 2) (5, 3) (6, 4) (7, 5)
2 (3, 1) (4, 0) (5, 1) (6, 2) (7, 3) (8, 4)
3 (4, 2) (5, 1) (6, 0) (7, 1) (8, 2) (9, 3)
4 (5, 3) (6, 2) (7, 1) (8, 0) (9, 1) (10, 2)
5 (6, 4) (7, 3) (8, 2) (9, 1) (10, 0) (11, 1)
6 (7, 5) (8, 4) (9, 3) (10, 2) (11, 1) (12, 0)

Table 1. All possible outcomes of (X, Y ). Each of the realization
per cell is equally likely.

Let (X, Y ) be a discrete bivariate random vector. Then the function f(x, y) from
R2 to R defined by f(x, y) = P (X = x, Y = y) is called the joint probability mass
function of (X, Y ). The notation fX,Y (x, y) will also be used.

1.1.1. Marginal pmf

Given the joint pmf fX,Y (x, y), the marginal pmf of X denoted by fX(x) is given
by:

fX(x) =
∑
y∈R

fX,Y (x, y)

Similarly, the marginal pmf of Y denoted by fY (y) is given by:

fY (y) =
∑
x∈R

fX,Y (x, y)

Consider the dice experiment above, what is fX(3) = P (X = 3)?

fX(3) =
∑
y∈R

fX,Y (3, y) =
∑
y

P (X = 3, Y = y) = P (X = 3, Y = 1) =
1

18

1.2. Continuous case

A function f(x, y) from R2 to R is called a joint probability density function or joint
pdf of the continuous bivariate random vector (X, Y ) if for every A ⊆ R2:

P ((X, Y ) ∈ A) =

∫ ∫
A

fX,Y (x, y) dx dy
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Any function f(x, y) satisfying f(x, y) ≥ 0 for all (x, y) ∈ R2 and

1 =

∫ ∞
−∞

∫ ∞
−∞

f(x, y) dx dy

is the joint pdf of some continuous bivariate random vector (X, Y ).

Example: consider the following function.

f(x, y) =

{
6xy2 0 ≤ x ≤ 1, and 0 ≤ y ≤ 1

0 otherwise

The support of (X, Y ) is the unit square. We check that P ((X, Y ) ∈ R2) = 1.∫ ∞
−∞

∫ ∞
−∞

f(x, y) dx dy =

∫ 1

0

∫ 1

0

6xy2 dx dy

=

∫ 1

0

3y2 dy

= 1

What is P ((X, Y ) ∈ A), where A is the region defined by A = {(x, y) ∈ R2 : x ≤
1
2
, y ≤ 1

2
}?

P ((X, Y ) ∈ A) = P (X ≤ 1

2
, Y ≤ 1

2
)

=

∫ 1/2

−∞

∫ 1/2

−∞
f(x, y) dx dy

=

∫ 1/2

0

∫ 1/2

0

6xy2 dx dy

=

∫ 1/2

0

3

4
y2 dy

=
1

32

We can visualize the joint pdf using Mathematica. We will see that geometric
intuitions can be useful sometimes – we interpret P ((X, Y ) ∈ A) as the volume
underneath the curve f(x, y) with respect to the region A.
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Example: consider again the pdf f(x, y) = 6xy2 with the support on the unit
square. What is P (X + Y ≥ 1)?

Let A be the region in 2-dimensional Euclidean space such that A = {(x, y) ∈ R2 :
x + y ≥ 1, 0 < x < 1, 0 < y < 1}. Essentially we are asking P ((X, Y ) ∈ A).
Graphically, A is the upper-right triangle of the unit square.

A = {(x, y) ∈ R2 : 1 ≤ x+ y, 0 < x < 1, 0 < y < 1}
= {(x, y) ∈ R2 : 1− y ≤ x < 1, 0 < y < 1}

Therefore,

P (X + Y ≥ 1) =

∫ ∫
A

f(x, y) dx dy =

∫ 1

0

∫ 1

1−y
6xy2 dx dy

=

∫ 1

0

[3x2y2]11−y dy

=

∫ 1

0

3y2 − 3(1− y)2y2 dy

=

∫ 1

0

3y2 − 3y2 + 6y3 − 3y4 dy

=
[3

2
y4 − 3

5
y5
]1
0

=
9

10

Example: consider the following function.

f(x, y) =

{
1 0 ≤ x ≤ 1, and 0 ≤ y ≤ 1

0 otherwise

This volume of this pdf is just the unit cube. Calculate P (X2 + Y 2 ≤ 1). First,
we show using brute-force algebra that P (X2 + Y 2 ≤ 1) = π

4
, then we use a simple

geometric argument that P (X2 + Y 2 ≤ 1) = π
4
.

P (X2 + Y 2 ≤ 1) equals to P ((X, Y ) ∈ A) where A = {(x, y) ∈ R2 : x2 + y2 ≤ 1, x ∈
[0, 1], y ∈ [0, 1]}.
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P (X2 + Y 2 ≤ 1) =

∫ ∫
A

f(x, y) dx dy

=

∫ 1

0

∫ √1−y2

0

1 dx dy

=

∫ 1

0

√
1− y2 dy

=
[1

2

(
y
√

1− y2 + sin−1(y)
) ]1

0

=
π

4

However, because the pdf has a uniform height of one with the support on the unit
square, P (X2 + Y 2 ≤ 1) is just the volume of a cylinder split into 4 equal parts.
Specifically, this cylinder has a height of one, and a radius of one.

1.2.1. Marginal pdf

The marginal pdf of X is defined as:

fX(x) =

∫ ∞
−∞

f(x, y) dy, for x ∈ R

The marginal pdf of Y is defined as:

fY (y) =

∫ ∞
−∞

f(x, y) dx, for y ∈ R

Example: consider again the pdf f(x, y) = 6xy2 with the support on the unit
square.

Derive the marginal pdf of X. Then, calculate P (1
2
< X < 3

4
).

fX(x) =

∫ 1

0

6xy2 dy =
[
2xy3

]1
0

= 2x, for x ∈ [0, 1]

P

(
1

2
< X <

3

4

)
=

∫ 3
4

1
2

fX(x)dx =

∫ 3
4

1
2

2x dx =
5

16
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2. Joint cdf

The joint cdf of (X, Y ) is defined as:

FX,Y (x, y) = P (X ≤ x, Y ≤ y)

When (X, Y ) is a continuous random vector, then

F (x, y) =

∫ y

−∞

∫ x

−∞
f(s, t) ds dt

From the fundamental theorem of calculus, this implies that

f(x, y) =
∂2F (x, y)

∂x∂y

The marginal cdf FX(x) can be obtained from limy→∞ F (x, y) = FX(x).

Example: consider the cdf:

F (x, y) =



0 x < 0 or y < 0

xy 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

x 0 ≤ x ≤ 1, y > 1

y 0 ≤ y ≤ 1, x > 1

1 x > 1, y > 1

Therefore by calculating f(x, y) = ∂2F (x,y)
∂x∂y

:

f(x, y) =

{
0 otherwise

1 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

Also check that the marginal cdf FX(x) can be obtained as:

FX(x) = lim
y→∞

F (x, y) =


0 x < 0

x 0 ≤ x ≤ 1

1 x > 1
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3. Expectation

Let g be a function from R2 to R. For the discrete case,

E[g(X, Y )] =
∑

(x,y)∈R2

g(x, y)P (X = x, Y = y)

Take g(X, Y ) = XY . What is E[XY ] in the dice experiment above?

E[XY ] = g(1, 0)P (X = 1, Y = 0) + g(1, 1)P (X = 1, Y = 1) + . . .

For the continuous case, we have:

E[g(X, Y )] =

∫ ∫
(x,y)∈R2

g(x, y)fX,Y (x, y) dx dy

Example:

Throw darts randomly at a unit square, record the x-coordinates and y-coordinates,
and multiply them together. On average, what value would you expect?

In another words, consider the pdf f(x, y) = 1 with the support on the unit square.
What is E[XY ]?

E[XY ] =

∫ ∞
−∞

∫ ∞
−∞

xyf(x, y) dx dy

=

∫ 1

0

∫ 1

0

xy dx dy

=

∫ 1

0

y/2 dy

=
1

4

What about E[X] or E[Y ]? Calculate the marginals first.

Example: What if we don’t throw darts uniformly but try to aim away from
the origin? Consider again the pdf f(x, y) = 6xy2 with the support on the unit
square.
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E[XY ] =

∫ 1

0

∫ 1

0

xy 6xy2 dx dy

=

∫ 1

0

2y3 dy

=
1

2

How would we calculate E[X2Y ]?

E[X2Y ] =

∫ 1

0

∫ 1

0

x2y 6xy2 dx dy

=
3

8

4. Conditional probabilities

Consider the bivariate random variables (X, Y ). The random variable Y conditional
on X = x is denoted by Y |X = x. Now, Y |X = x is another random variable , but
it is a scalar random variable. The density of Y |X = x is given by:

fY |X=x(y) =
fX,Y (x, y)

fX(x)

Example:

Consider the random variables (X, Y ) that has the joint pdf f(x, y) = 6xy2 for
(x, y) ∈ [0, 1]2. Consider the random variable Y |X = 0.5. This random variable is
a scalar random variable. The pdf of Y |X = 0.5 is in terms of y only:

fY |X=0.5(y) =
fX,Y (0.5, y)

fX(0.5)

=
6(0.5)y2

2(0.5)

= 3y2 for y ∈ [0, 1]

Now consider Y |X, which is a bivariate random variable, unlike Y |X = x, which is
a scalar random variable. In particular, the joint density of Y |X is:
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fY |X(y|x) =
fX,Y (x, y)

fX(x)

The two pdfs look identical, except in the pdf of Y |X = x, we treat x as fixed and
as such, fY |X=x(y) is a one-dimensional function. On the other hand, the joint pdf
of Y |X is a function of both x and y, and as such it is two-dimensional. That is,
fY |X=x : R→ R, but fY |X : R2 → R.

Example:

Consider again the bivariate random variable (X, Y ) that has the joint pdf f(x, y) =
6xy2 for (x, y) ∈ [0, 1]2. The joint density of Y |X is given by:

fY |X(y|x) =
fX,Y (x, y)

fX(x)

=
6xy2

2x

=

{
3y2 for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

0 otherwise

Note: fY |X : R2 → R is a function of both x and y, as the support of the function
explicitly depends on x.

Example: Consider the joint density f(x, y) = x+y, with support on (x, y) ∈ [0, 1]2.
What is the joint density of Y |X?

First show that the marginal density of X is fX(x) = 1
2

+x, for x ∈ [0, 1]. Therefore
the conditional density is:

fY |X(y|x) =

{
2(x+y)
1+2x

(x, y) ∈ [0, 1]2

0 otherwise

4.1. Conditional expectation

Consider the random variable Y |X = x. The expectation E[Y |X = x] is defined as
E[Y |X = x] =

∫∞
−∞ yfY |X=x(y) dy. Note that E[Y |X = x] is a constant. In general,

we have E[g(Y )|X = x] =
∫∞
−∞ g(y)fY |X=x(y) dy, for some function g.

Example: consider again the joint pdf f(x, y) = x + y with the support given by
{(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. From the previous derivation, the conditional

density is fY |X=xf(y) = 2(x+y)
1+2x

for (x, y) ∈ [0, 1]2.
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E[Y |X = x] =

∫ 1

0

yfY |X=xf(y) dy

=

∫ 1

0

y
2(x+ y)

1 + 2x
dy

=

∫ 1

0

2xy

1 + 2x
+

2y2

1 + 2x
dy

=
x

1 + 2x
+

2

3(1 + 2x)
=

2 + 3x

3 + 6x

E[Y |X = x] is treated as a constant. We check that E[Y |X = 0] = 2/3, E[Y |X =
1] = 5/9. E[Y |X = x] is decreasing in x, what is the geometric intuition behind
this?

Now let E[Y |X = x] = g(x). Then we define E[X|Y ] to be the random variable Z ob-
tained by the transformation Z = g(X). As such, E[Y |X] is a scalar random variable
that has the same probability space as X. For this example, E[Y |X] is the random
variable defined by the transformation Z = 2+3X

3+6X
. We can then derive the pdf of

Z ≡ E[Y |X]. In particular, the inverse of the transformation is g−1(z) = 2−3z
−3+6z

, with
dg−1(z)
dz

= − 1
3(1−2z)2 . Therefore, fZ(z) =

∣∣∣dg−1(z)
dz

∣∣∣fX(g−1(z)) = 1
3(1−2z)2 (1

2
+ 2−3z
−3+6z

) for

z ∈ [4
9
, 2
3
].

Conditional expectation is important and useful later on. Suppose Y is an outcome
variable of interest, and X is a variable that can be used to predict Y . An excellent
predictor of Y as a function of X = x is E[Y |X = x]. This is optimal in a formal
way.1 For instance, Y is the transaction price of a house in the neighborhood and X
is the square footage of the house. Then we can predict the price of a house when
the square footage is 1000 as E[Y |X = 1000].

5. Independence

If X ∼ fX(x) and Y ∼ fY (y) are independent, then the joint pdf of (X, Y ) is:

fX,Y (x, y) = fX(x)fY (y)

Furthermore, if a joint pdf fX,Y (x, y) can be factored as:

1If your loss function is a mean-squared error. That is, let f(X) = E[Y |X], then f(X) mini-
mizes the mean-squared error E[(Y − h(X))2] among all possible functions h(X).
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fX,Y (x, y) = g(x)h(y)

Then X and Y are independent random variables.

Example: consider again the joint pdf f(x, y) = 6xy2 with the support on the unit
square. Are X and Y independent? What about f(x, y) = 1 with the support on
the unit square?

Consider the pdf f(x, y) = 2 with support on the triangle {(x, y) ∈ [0, 1]2 : x+ y ≤
1}. Are X and Y independent?

6. Covariance and correlation

The covariance between X and Y is:

Cov(X, Y ) = E[(X − E[X])(Y − E[Y ])]

= E[XY ]− E[X]E[Y ]

Remember E[XY ] =
∫ ∫

xyf(x, y) dx dy.

The correlation between X and Y is:

Corr(X, Y ) =
Cov(X, Y )√

Var(X)Var(Y )

Which is bounded between [−1, 1].

A useful result is:

Var(aX + bY ) = a2Var(X) + b2Var(Y ) + 2abCov(X, Y )

It is also easy to show that if a is a constant, then Cov(aX, Y ) = aCov(X, Y )
and Cov(X, a) = 0. Further, Cov(X,X) = Var(X). Moreover, Cov(X + Z, Y ) =
Cov(X, Y ) + Cov(Z, Y ), which implies that if a is a constant, then Cov(X+a, Y ) =
Cov(X, Y ).

Show that when X and Y are independent, then Cov(X, Y ) = 0. However the
converse is not necessarily true! Zero covariance does not imply independence.
Covariance only measures a linear relationship between X and Y . For example,
consider a random variable X such that its first and third moments are zero. Now,
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if Y = X2, then Cov(X, Y ) = 0. This means that covariance cannot capture non-
linear relationship between random variables. Instead, it is a good idea to always
plot the scatterplot and inspect any non-linearity in the scatterplots.

Example:

Consider the joint pdf f(x, y) = 6xy2 with the support on the unit square. Re-

call that E[XY ] =
∫ 1

0

∫ 1

0
xy 6xy2 dx dy = 1

2
. Moreover, E[X] = 2

3
and E[Y ] = 3

4
.

Therefore, Cov(X, Y ) = 0.

Similar calculations can be done for the discrete case:

E[XY ] =
∑
y∈Y

∑
x∈X

xyP (X = x, Y = y)

Finally, recall the joint pdf f(x, y) = x + y with the support on {(x, y) ∈ R2 : 0 ≤
x ≤ 1, 0 ≤ y ≤ 1}.

Previously, we found that the marginal density of Y is fY (y) = 1
2

+ y for y ∈ [0, 1].

As such, E[Y ] = 1
4

+ 1
3

= 7
12

.

E[XY ] =

∫ 1

0

∫ 1

0

xyf(x, y) dx

=

∫ 1

0

∫ 1

0

xy(x+ y) dx dy

=
1

3

Therefore the covariance between X and Y is − 1
144

, which is negative. This number
seems small, because it has not been normalized with the scale of (X, Y ). We can
also show that Var(Y ) = 11/144, and Var(X) = 11/144.2 Hence, the correlation
between (X, Y ) is − 1

11
. Does this make geometric sense?

2Note that the pdf is symmetric in x and y.
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